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The MISTE flight experiment plans to measure the specific heat at constant
volume, CV , and isothermal susceptibility, χT , near the 3He liquid-gas crit-
ical point. Precision ground-based experiments have been performed in the
crossover region away from the critical point in preparation for this flight.
A new method for precisely determining the critical temperature is being
evaluated and will be presented. A sweep electrostriction method was also
demonstrated for obtaining the isothermal susceptibility close to the critical
point. We have been able to demonstrate that the chemical potential can be
obtained from these electrostriction measurements. Pressure versus density
measurements along isotherms below the critical temperature were performed
to determine the isothermal susceptibility along the coexistence curve. These
measurements are compared to susceptibility data obtained along the critical
isochore above the transition.

1. INTRODUCTION

The MISTE flight experiment plans to perform heat capacity at con-
stant volume, CV , isothermal susceptibility, χT , and PV T measurements in
the same experimental cell near the liquid-gas critical point of 3He. These
experiments, performed in a microgravity environment, will provide mea-
surements in the asymptotic region two decades in reduced temperature
closer to the transition than obtained on earth. The fluctuation-induced
constant-volume heat capacity along the critical isochore and the isothermal
susceptibility along the critical isochore and coexistence curve are expected
to satisfy the following theoretical expressions:
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where α � 0.11 and γ � 1.24 are universal critical exponents and A±
0 and

Γ±
0 are system-dependent critical amplitudes. The superscripts “+” and “–”

correspond to positive and negative reduced temperatures t ≡ (T − Tc)/Tc,
respectively. The isothermal susceptibility along the coexistence curve is
given by χ−

T
∗
. The system-dependent critical parameters are Tc, ρc, and Pc,

and Bcr is a fluctuation-induced, constant term. The confluent singularity
expansion in the brackets includes an independent universal correction-to-
scaling exponent,1 ∆s = 0.52±0.02 and system-dependent amplitudes A±

1

and Γ±
1 . Analytic background terms must also be included in analyzing

heat-capacity measurements.
Critical phenomena theories can predict critical exponents and univer-

sal amplitude ratios. However, an exact determination of the asymptotic
region cannot be made theoretically since the leading critical amplitudes
and the amplitudes associated with correction-to-scaling confluent singular-
ities are system dependent. The MISTE flight experiment should permit an
accurate determination of the leading system-dependent asymptotic critical
amplitudes for 3He. A knowledge of these asymptotic amplitudes will permit
a more accurate analysis of crossover measurements farther away from the
transition. Ground-based studies are now being performed in the crossover
region2 in preparation for this future flight experiment. The results of some
of these studies will be reported in this paper.

2. GROUND–BASED EXPERIMENTS

Ground-based measurements were performed in a flat pancake fluid cell
shown in Fig. 1. The cell temperature was measured using a GdCl3 high
resolution thermometer (HRT) with a sensitivity of ∼ 1 nK near the 3He
critical point (Tc = 3.31 K). The density sensor was a parallel plate capac-
itor situated half way between the top and bottom of the cell. The density
was determined from the measurement of the dielectric constant using the
Clausius-Mossotti equation. A Straty-Adams type pressure sensor was also
situated at the midplane of the cell. This sensor consisted of a parallel plate
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Fig. 1. Schematic of ground-based cell for measuring heat capacity and
susceptibility.

capacitor with one plate attached to a flexible diaphragm that sensed pres-
sure changes in the cell. This experimental configuration has the advantage
that pressure, density, and temperature data can be simultaneously obtained
in the same cell while heat capacity and susceptibility measurements were
being performed.

The isothermal susceptibility, χT = ρ(∂ρ/∂P )T , was measured along
isotherms both above and below the critical temperature. This was achieved
by initially overfilling the cell and then slowly removing fluid from the cell
and measuring the density and pressure as a function of time. Susceptibility
data were obtained from the slope of P versus ρ curves in the reduced tem-
perature range of 6 × 10−5 < |t| < 10−1. The density of the susceptibility
maximum approaches the critical density, ρc, as T → Tc. After complet-
ing the susceptibility measurements, the low temperature valve was closed
at the critical density. Heat-capacity measurements were then performed
using a pulse technique in the single and two-phase regions over the range
5×10−4 < |t| < 10−1. Drift heat-capacity measurements were also performed
close to the transition. These new CV and χT data agreed with earlier mea-
surements from Horst Meyer’s group3–6 over the same temperature range of
overlap.

3. Determination of the critical temperature

In order to successfully analyze experimental measurements near a crit-
ical point, it is important to determine the critical temperature as precisely
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Fig. 2. Restricted cubic model prediction for the 3He heat capacity in a 0.05
cm high cell along the critical isochore in 1g. A change in slope is predicted
at the transition temperature.

as possible. There are several methods for finding Tc. One approach is to
have Tc be a fitting parameter when analyzing data. However, the accu-
racy of the resultant Tc will depend on the model chosen and closeness of
the data to the transition. We have used this approach with susceptibility
measurements above the transition7 to obtain Tc = 3.315533 K. This Tc will
be used in analyzing the susceptibility measurements presented later in this
paper. One can also attempt to use some characteristic signature of the
transition. For example, it is known that the time constant for equilibrium
in performing heat-capacity measurements is much greater in the two-phase
region. Unfortunately, in ground-based measurements, the gravity induced
density gradient smears out this sudden change near the transition.

We have recently been investigating a new slow-drift heat-capacity ap-
proach for determining the transition temperature. For experimental cells of
small vertical height in a gravitational field, theory predicts an experimen-
tally measurable change in the temperature derivative of CV at Tc with a
heat capacity maximum occurring in the two-phase region. Figure 2 shows
the restricted cubic model8 prediction for the 3He heat capacity in our 0.05
cm high cell along the critical isochore in 1g. We see a change in slope oc-
curring at the transition and a peak value located at a reduced temperature
of t ≈ −1.7×10−5 below Tc. Figure 3 shows an example of our experimental
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Fig. 3. Experimental determination of the transition temperature using the
3He heat capacity anomally along the critical isochore in 1g.

measurements performed during a slow drift down through the transition.
There is a kink in the data that we associate with the transition temperature
Tc. The transition temperature can be determined to better than ±15µK.
The peak in these data is at t ≈ −2.3× 10−5, which is close to the theoreti-
cally predicted value. Additional measurements are planned at even slower
drift rates to make sure we have this level of reproducibility in determining
Tc.

4. Chemical potential

An electrostriction technique was previously developed9 to perform sus-
ceptibility measurements within t < 10−4. This technique is based on the
fact that an electric field gradient can produce a pressure gradient within
a dielectric fluid (δP ∝ E2) that in turn induces a density change. Our
approach is to apply a dc voltage across a parallel plate capacitor to pro-
duce a uniform electric field within the density sensor capacitor gap. The
density change δρ is obtained at several voltages and δρ/δP is determined
in the limit of zero voltage. We have been evaluating drift electrostriction
measurements using a fixed dc voltage across the gap. Figure 4 shows mea-
surements of the density change between the applied dc voltage and zero dc
voltage. The drift rates were ≈ −4 × 10−4 K/hr. The susceptibility at any
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Fig. 4. Density change versus temperature for electrostriction drift (lines)
and equilibrium (symbols) measurements at various constant applied dc bias
voltages.

given temperature can be determined by extrapolating the density values ob-
tained from these curves to zero dc voltage. We also performed equilibrium
measurements, shown by symbols, at a few reduced temperatures to see if
this drift rate was slow enough. Good agreement was obtained between the
drift and equilibrium measurements down to about a reduced temperature
of t = 5 × 10−5. The MISTE flight experiment plans to reach a reduced
temperature of 10−6 that will require even slower drift rates.

We have realized that this electrostriction technique can be used to
conveniently determine the chemical potential difference that can be written
as dµ = −sdT + dP/ρ. Under isothermal conditions the integration of this
expression reduces to

µ(ρ2, T ) − µ(ρ1, T ) =

∫ P (ρ2,T )

P (ρ1,T )
dP/ρ , (3)

where ρ1 is the ambient density outside the capacitor gap and ρ2 is the
density inside the gap. Since the pressure gradient induced by an electric
field gradient is given by

∇P = (ε0ρ/2)∇(E2(∂ε/∂ρ)), (4)

we can write the chemical potential difference between two densities, Eq. (3),
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Fig. 5. Comparison of electrostriction measurements to theoretically pre-
dicted universal curve for the chemical potential.

as

µ(ρ2, T ) − µ(ρ1, T ) = (3ε0ζcρc/2(ρc − ζcρ2)
2)E2, (5)

where ζc = 4πα′/3 with α′ being the polarizability of the fluid.
In the asymptotic region, scaling theory predicts the chemical potential

difference from its critical value can be scaled by a universal function h

(µ∗(ρ, T ) − µ∗(ρc, T ))/(∆ρ|∆ρ|δ−1) = Dh(x/x0) , (6)

where µ∗ = (ρc/Pc)µ, x = t/(|∆ρ|)1/β , and x0 = 1/B
1/β
0 . The reduced

density ∆ρ ≡ ρ/ρc − 1, and β � 0.326 is the critical exponent and B0

the critical amplitude that define the shape of the coexistence curve. D is
the critical amplitude associated with the divergence of the pressure with
density along the critical isotherm. By setting the ambient density ρ1 equal
to the critical density in Eq. (5), we obtain the following expression for the
universal function h

Dh(x/x0) = (3ε0ζcρc/2(ρc − ζcρ2)
2)(E2/(∆ρ)δ). (7)

The right side of this equation can be determined experimentally since we
measure the density ρ2 and calculate ∆ρ and the electric field. Figure 5 is a
plot of the universal curve. The solid line is the prediction from the restricted
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cubic model8 and the data points come from equilibrium electrostriction
measurements at various temperatures. We do not expect to have a good
fit between theory and experiment since most of the data points are not in
the asymptotic region. However, we anticipate a much more stringent test
of this scaling theory prediction coming from the MISTE flight experiment
where measurements will be performed much closer to the transition.

5. Susceptibility measurements

The isothermal susceptibility along the coexistence curve can also be
obtained from pressure versus density measurements as stated above. Figure
6 shows an example of P versus ρ measurements at a reduced temperature
of t = −9.5 × 10−5. The break in (∂ρ/∂P )T at a reduced density ∆ρ ≈ 5%
indicates the onset of the two-phase region in which the pressure remains
constant until the gas side of the coexistence curve is reached at ∆ρ ≈ −5%.
The susceptibility at the coexistence curve is obtained from the slope of this
curve as it enters and exits the two-phase region. The coexistence curve
densities at this temperature can also be determined to within ± 0.1% from
such breaks in the slope. This method for determining the susceptibility and
coexistence curve will become less precise as the transition is approached
since the change in slope will be less pronounced.

The experimentally determined susceptibility along the critical isochore
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Fig. 7. Susceptibility measurements along the critical isochore above Tc

and along the coexistence curve below Tc. Also included are the data from
Wallace and Meyer (WM), and Pittman, Doiron and Meyer (PDM).

and coexistence curve are shown in Fig. 7. Earlier measurements from Wal-
lace and Meyer3, and Pittman, Doiron, and Meyer4 have also been included.
The MISTE measurements along the coexistence curve extend over a decade
closer to the transition than the earlier data. We see good agreement be-
tween the various measurements in the regions of overlap. The susceptibility
along the coexistence curve and critical isochore seem to have the same slope
in this log-log plot, with the coexistence curve susceptibility having a smaller
magnitude. To estimate the difference in magnitude between the suscepti-
bility data above and below the transition, the critical isochore data were
divided by 3.7 to approximately overlap the coexistence curve data. This is
the same value used by Wallace and Meyer in their earlier work.3 These nor-
malized data are shown in Fig. 8. It is surprising to see that all the data sets
are consistent with each other over three decades in reduced temperature.
This factor of 3.7 can be considered as an effective ratio of the critical am-
plitudes (Γ+

0 /Γ
−
0 )eff in the crossover region. Critical phenomena theories10

predict a ratio Γ+
0 /Γ

−
0 = 4.95 in the asymptotic region. Since most of these

ground-based susceptibility data are outside the asymptotic region, addi-
tional measurements from the MISTE flight experiment are needed closer to
the transition to test this theoretical asymptotic prediction and to obtain a
better understanding of the observed crossover behavior.
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Fig. 8. Normalized susceptibility measurements. Critical isochore data
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6. FUTURE STUDIES

The recent heat capacity and susceptibility measurements need to be an-
alyzed using accurate theoretical crossover models in order to obtain a better
understanding of thermodynamic behavior farther away from the transition.
We began this process by analyzing our susceptibility data along the criti-
cal isochore above the transition using a field-theoretical Renormalization-
Group φ4 approach11 recently adapted to the O(1) universality class.12 The
results of this initial study7 suggested that the φ4 model would be a use-
ful tool to investigate thermodynamic quantities measured along the critical
isochore and coexistence curve. More recently, we have used this model
to successfully analyze our heat-capacity data along the critical isochore.13

The MISTE susceptibility and heat-capacity data have also been analyzed
successfully using a new crossover parametric equation-of-state.13 Further
analyses of thermodynamic measurements throughout the critical region are
planned using both the crossover parametric equation-of-state and φ4 mod-
els.
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New Science and Measurement Technology from
Critical Dynamics in Microgravity (DYNAMX)

Rob Duncan, A. V. Babkin, S.T.P. Boyd, T. D. McCarson, D. A. Sergatskov (UNM)
P. K. Day, D. Elliott (JPL),

B. J. Klemme (NIST)

DYNAMX is in preparation for the Low-Temperature Microgravity Physics
Facility (LTMPF) M1 Mission on the International Space Station (ISS),
scheduled for launch in 2005.  While the microgravity laboratory will be
required to make the first detailed test of the renormalized, field theoretic
predictions (by Haussmann and Dohm (HD)) for nonlinear effects near the
superfluid transition in 4He, many substantial results have been obtained
during our ground definition of this experiment.  We have clearly resolved
the nonlinear region on Earth, and we have obtained experimental evidence
of the gravitational limit to the otherwise divergent correlation length.  The
microgravity laboratory will be required to make a quantitative comparison
of the HD theory to our thermal conductivity data, and to test for the HD
quasi-scaling relationship, which would explicitly display the effects of the
heat flux on the correlation length.  New technology has been developed for
DYNAMX, including a new type of paramagnetic susceptibility
thermometer, an ultra-miniature cryovalve, and a new cell construction
technique.  These new technologies will permit next-generation experiments
to be conducted on Earth orbit in the future.  This work has been supported
by NASA through the Microgravity Projects Office.  The US Department of
Energy funded the development of the PdMn thermometry alloys through
Sandia National Labs.



Boundary Effects on the Superfluid Transition of He-4 (BEST)

Guenter Ahlers, University of California, Santa Barbara

This talk will review the opportunities for microgravity and Earth-based
measurements of the thermal conductivity λ(t,L) of  4He confined in cylindrical
geometries of radius L with axial heat flow at temperatures near the bulk
superfluid-transition line Tl(P)( t  is the reduced temperature t = T/ Tl - 1). It
provides an evaluation of existing data for L = 1 mm near Tl at saturated vapor
pressure (SVP), and uses these to derive a scaling function for the resistivity
R(t,L) = 1/λ(t,L) . The purpose of future measurements over a wide range of L
and of the pressure P will be to test the applicability of this function. Here the
scaling function is used to assess quantitatively the effect of gravity on potential
Earth-based measurements. For typical three-mm-high samples at SVP, values
of L significantly larger than 8 mm can only be investigated fully in
microgravity. At higher pressures the gravity effect is even larger. The analysis
suggests a flight experiment for a cylinder diameter of 50 mm.



Ultra-High-Energy Gamma Ray Bursts from Crossed Cosmic Strings:
Simulation by Crossed Vortices in Superfluid Helium

Richard Ferrell
University of Maryland

Probably the greatest puzzle in modern astrophysics is posed by the extremely
high-energy cosmic ray bursts.  What kind of event could generate such a
release of energy?  A possible source of sufficiently high energy might be
cosmic strings.  These topological singularities are conjectured to have been
generated in the course of the phase transition that must have taken place at an
early stage of the evolution of the universe.  Theory dictates that a cosmic
string would contain an enormous energy per unit length in its core and that a
long cosmic string would remain stable until it encountered and
“intercommuted” with another cosmic string.  Such a crossing and the
shortening of the ensuing kinks is expected to release energy in the very high
range that is observed for the cosmic ray bursts.  In the spirit of exploiting the
analogy between condensed matter phenomena and those observed in the
cosmos, we discuss the possibility of simulating, by means of vortices in
helium-4, the hypothesized behavior of cosmic strings.  We propose to detect
the sonic pulse that should result from the crossing of two vortices.





Sound Propagation and Magnetic Resonance in Porous Impurity-Helium Solids

S.I. Kiselev, V.V. Khmelenko, C.Y. Lee, D.M Lee
Laboratory of Atomic and Solid State Physics,

Cornell University, Ithaca, NY 14853-2501, USA

The observed features of attenuation of ultrasound in Im-He samples created after introduction
of impurity particles ( D2, N2, Ne, Kr) in a volume of helium II show that a porous substance con-
sisting of a loosely interconnected continuous network is formed. It is formed by impurity particles
encapsulated in solidi�ed helium. The propagation of ordinary sound in these porous samples is
similar to the fast sound mode in light aerogels. The temperature dependence of attenuation for
di�erent Im-He samples is investigated. It is established that the character of attenuation in D2-He
samples is considerably di�erent from that in heavier Im-He solids (Im = N2, Ne, Kr). Analysis of
attenuation lets us conclude that Im-He samples have a wide distribution of pores from 8 nm to 800
nm. The study of ultrasound in helium in Im-He samples near the �-point shows the presence of
broadening in the attenuation peak as compared with bulk liquid helium. The suppression of Tc is
very small, �0.2 mK. Recent attempts to study hyper�ne resonance in D-He solids are discussed.

I. INTRODUCTION

The investigation of neutral atoms and clusters in liq-
uid and solid helium is a rapidly developing research �eld
[1{4]. Much progress has been achieved in studies of
the spectral characteristics of single atoms or molecules
trapped in matrices of solid helium or dissolved in liquid
helium, from which information about the structure of
the helium surrounding these impurities was found.
The impurities can be divided into two classes accord-

ing to the sign of chemical potential inside the helium
matrix. Particles with a positive potential tend to form
bubbles, while atoms with a negative potential create
snowballs. In the latter case, after introducing the impu-
rity particles into liquid helium, we can produce stable
impurity-helium (Im-He) clusters, which make it possi-
ble to create macroscopic Im-He samples consisting of
impurity atoms isolated in liquid or solid helium. At
�rst these systems were obtained by injecting atoms and
molecules such as nitrogen, deuterium, neon and krypton
[5{7] into super
uid helium. These metastable systems
are of fundamental interest. For example, there is the
possibility of observing collective e�ects caused by the
interaction of stabilized impurity particles in helium and
also the opportunity to create new materials with high
energy density stored in them [8]. A very high relative
concentration of nitrogen atoms in the solidi�ed helium
(N:He = 4%) has already been achieved by injecting the
products of a nitrogen-helium discharge into a volume of
super
uid helium [6,9]. For this case, the density of the
chemical energy stored in these samples (�5�103 J/gm)
is close to that of the best chemical explosive materials.
Another interesting aspect of Im-He systems is the pos-
sibility of chemical reactions in a solid matrix when the
state of the low-temperature matrix is mostly determined
by zero-point motion [10{12]. Investigations of atoms
and molecules of hydrogen isotopes stabilized in super-

uid helium have revealed tunneling reactions resulting
in the exchange of hydrogen and deuterium atoms be-

tween the atomic state and the bound molecular state
[5].

Investigations of macroscopic solid samples formed by
injecting impurities into super
uid helium have opened
the possibility for the creation of metastable solid phases
built from coalescing clusters of solid helium surrounding
the impurity particles. Later it was shown that the cen-
ters of the these clusters might consist of either single im-
purity particles or small clusters of impurities [13,14]. At
the same time the structure of these Im-He solids is not
fully determined. Recently X-ray spectroscopy showed
that the impurities (surrounded by a few layers of solid
helium) formed porous structures in super
uid helium
[15]. The characteristic size of the constituent building
blocks of this porous material is 6 nm. The density of im-
purity particles can be as high as 1020 atoms/cm3 (with
a volume fraction �0.5%).
We brie
y summarize the present state of knowledge

regarding the Im-He solids. The preponderance of ev-
idence suggests that macroscopic samples of the Im-He
solid phase are built from aggregations of small Im-He
clusters. Furthermore, we believe that these aggregates
form extremely porous solids into which liquid helium
can easily penetrate. They consist of a loosely connected
continuous network of impurities or clusters of impuri-
ties each of which is surrounded by one or two layers of
solidi�ed helium. Therefore we have a unique opportu-
nity to investigate the properties of super
uid helium in
porous structures formed by particles with a well known
potential of interaction with helium.

A great deal of e�ort has recently been dedicated to
the investigation of super
uid helium in porous mate-
rials. We cite here a recent review article describing
the speci�c features of helium in various porous struc-
tures [16]. The importance of these studies is now dis-
cussed. Super
uidity of helium in restricted geometries
has been the object of much theoretical and experimen-
tal interest in recent years. Helium has long provided
a testing ground for theories of phase transitions. Bulk

1



helium exhibits three-dimensional (3D) critical behavior
near lambda transitions, while helium �lms on 
at sub-
strates are 2D with a vortex-inhibiting transition of the
Kosterlitz-Thouless type [17]. When helium is adsorbed
in a porous medium either as a �lm or completely �lling
the pores, its behavior may be changed in a number of
ways. Finite size e�ects might shift or even smear out the
phase transition, the multiply-connected substrate geom-
etry may change the e�ective dimensionality, or disorder
induced by the porous material may change the nature of
the transition. The super
uid density, �s vanishes near
the lambda-point according to the power law:

�s(t) = �s0 j t j� ; (1)

where t is a reduced temperature (t = (T � Tc)=Tc) with
transition temperature Tc. The super
uid density expo-
nent � is found to be 0.6705 for bulk helium [18], for
helium in Vycor glass [19] and for helium in porous gold
[20]. For a particular aerogel it is signi�cantly larger
- 0.81 [19]. For di�erent porosity aerogels it changes
from 0.71 to 0.81 [21]. At the same time the super
uid
transition temperature is suppressed down to 1.955 K in
Vycor. For porous gold (which contains larger pores)
Tc = 2:1691� 5 � 10�5 K, and for di�erent porosity aero-
gels the suppression is very small: Tc = 2:16985�3 �10�5
( in 95% aerogel), Tc = 2:1717 � 1 � 10�5 ( in 99.5%
aerogel) [21]. In the light of these previous studies, the
problem of investigating the critical behavior of helium
near the lambda point in the new class of porous material
discussed here arises quite naturally. There are experi-
mental di�culties in combining the method of preparing
impurity-helium solids with precise heat capacity or tor-
sional oscillator techniques. On the other hand, ultra-
sonic velocity and attenuation measurements [22,23] can
be easily applied to investigate super
uid helium in Im-
He solids. The sound velocity in porous media can pro-
vide information about the super
uid density as well as
the density and elastic properties of the solid matrix. The
sound attenuation re
ects the dissipation in the system,
and its frequency dependence is related to the character-
istic pore size [24]. Also, if the sound speed in a \dry"
sample (a sample with liquid helium removed) could be
measured, we could then determine the e�ective density
of the Im-He solid. This turns to be extremely di�cult
and has not as yet been accomplished.
The motion of a 
uid in a porous mediumduring acous-

tic measurements depends on the pore size and the 
uid's
properties. In liquid 4He the viscous penetration depth
is

�visc = (2�=!�n)
1=2

; (2)

where � is the viscosity of 4He, �n is the density of the
normal component and ! is the frequency of ultrasound.
At low sound frequencies, �visc is bigger than the pore
size so the entire normal component is viscously locked

to the solid matrix. Therefore the main e�ect of the 
uid
is to change the e�ective density of the porous medium.
At high frequencies, only a thin surface layer is dragged
along with the solid. The e�ective density of the porous
material then is much smaller and the sound is strongly
attenuated by the viscous losses in the surface layer. To
use sound for probing the structure of porous material,
one should vary �visc over as large a range as possible.
Super
uid helium gives us this unique opportunity. Be-
tween 1.0 to 2.17 K the normal 
uid density fraction
varies from zero to one, causing �visc to change by an
order of magnitude from 1500 nm to 100 nm for 5 MHz
sound. Biot created a basic theoretical framework for
sound propagation in porous materials [25,26]. He con-
sidered the 
ow of the viscous 
uid under an oscillatory
pressure gradient in elastic porous solids. In the low
frequency regime his theory predicted that attenuation
changes as [24]

� / �2n!
2=�; (3)

For high frequency sound, the corresponding attenuation
is

� / p
��n!: (4)

In this paper we report results of ultrasound measure-
ments of velocity and attenuation of longitudinal waves
in helium �lled porous Im-He solids. Some of the results
have been published in our previous paper [27]. It was
found that the speed of sound in this material is close to
and decreases more rapidly with temperature than �rst
sound in bulk liquid helium, similar to behavior observed
in aerogel [28]. There was no clear explanation, how-
ever, to the way the attenuation of ultrasound changes
with temperature in helium �lled Im-He solids. Here we
present the results of more detailed investigations of the
speed and attenuation of sound, particularly near the
lambda-point. One goal of this work was to check a pos-
sible Tc suppression. We also performed the measure-
ments at di�erent frequencies (1,3,5 MHz) to help us to
understand the mechanism of attenuation. Moreover we
investigated the stability of di�erent Im-He samples be-
tween 1 and 4.2 K.
The �nal section of our paper will discuss the hyper�ne

resonance experiment.

II. EXPERIMENTAL METHOD

A. Preparation of porous impurity-helium solids

The technique for creating impurity-helium solids in
a volume of He II was similar to that developed by the
Chernogolovka group [6,29]. A gas jet of helium contain-
ing a small fraction (0.5-1%) of impurity atoms or
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FIG. 1. Experimental cell: 1 - Atomic and molecular
source, 2 - Impurity-Helium jet, 3 - surface of liquid helium, 4
- quartz dewar, 5 - quartz funnel, 6 - Impurity-Helium solid,
7 - ultrasound cell, 8 - germanium thermometer.

molecules impinged onto super
uid helium contained
in a small dewar beaker sitting in the main helium glass
dewar (Fig.1). The helium vapor pressure in the dewar
was maintained at 1-5 Torr by a high speed rotary pump.
The gas entered through a quartz capillary of diameter
about 0.7 mm, near the end of which was a region con-
taining a high power RF (60 MHz) discharge for dissoci-
ation of molecules. In this series of experiments most of
the Im-He samples were created by introducing into He II
a gas jet not subjected to the action of the RF discharge.
When there was no need to dissociate molecules we used
a stainless steel capillary with inner diameter of 1.6 mm
surrounded by a vacuum jacket with a heater at the bot-
tom end. As in all of our previous setups, the diameter
of the hole at the end of the capillary was 0.7 mm. The
nozzle of the capillary was located 2 cm above the surface
of the super
uid helium in the small quartz dewar men-
tioned above, which acted as the collection beaker. To
prevent the freezing of impurities in the nozzle we heated
the end of the capillary by an annular heater ( R�10
).
In order to keep the level of helium in the beaker con-
stant, a continuously operating fountain pump was used.
When the gas mixture jet impinged on the surface, a
macroscopic snow
ake-like semitransparent material was
created. This fell down through the liquid and then con-
gealed, forming a porous impurity-helium solid between
the transducers of the ultrasound cell. The centers of
transducers were �5cm below the level of helium in the
beaker. For more e�ective collection of the sample in the
cell we used a quartz funnel with two side plates which
were placed between the endplates of the cell. On some
occasions, in order to compress the sample at low tem-
peratures we used a small te
on cylinder which could be
moved up and down. We can monitor the presence of the
sample in the cell and its homogeneity visually through
slits on the sides of the glass dewars. In these experi-
ments the impurities used were Kr, Ne and molecular D2

and/or N2. Gas mixtures of Im:He = 1:100 were used to
dilute the impurity particles and therefore prevent them
from congealing as they passed from the source to the
surface of the liquid helium. The total 
ux of the gas
mixtures was (4-6)�1019 particles/s. Samples with a vis-
ible volume between 1.2 and 1.7 cm3 were usually used.

B. Ultrasound cell

In our experiments we used two di�erent ultrasound
cells. In the �rst cell two x-cut gold plated quartz trans-
ducers (5 MHz fundamental) were used [27]. The crys-
tals were 1 cm in diameter. Each of these was pushed
against the parallel walls of the cell by two springs, one
of which served as a central electrode. The ground was
provided by the brass body of the cell. The path length
was determined at room temperature with a micrometer
with a correction being made for the contraction upon
cooling. The value for the path length used in the exper-
iments was 1.572�0.005 cm. In our second cell we used
two LiNbO3 transducers with fundamental frequency �1
MHz (Fig. 1). The odd harmonics were also used (3 and
5 MHz). The transducers were 1.3 cm in diameter. Oth-
erwise the design of the second cell was similar to the
�rst one except that the distance between transducers
was 1.470�0.005 cm.

C. Spectrometer

The ultrasonic measurements were made using a ho-
modyne phase-sensitive spectrometer (Fig. 2). A contin-
uously operating oscillator was gated to provide a trans-
mitter pulse of 4-12 �sec.
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FIG. 2. Ultrasound spectrometer: 1 - HP8656B signal gen-
erator; 2 - MATEC310 gated ampli�er; 3, 6 - step attenuators
(0-100 dB); 4 - ENI325LA power ampli�er (+50 dB); 5 - ul-
trasound cell; 7 - ampli�cation stage (+70 dB); 8, 9 - power
splitters; 10 - hybrid power splitter; 11, 12 - mixers; 13, 14 -
low pass �lters; 15, 16 - PAR160 box car integrators; 17, 18 -
multimeters; 19 - computer ; 20 - TEK TDS460 oscilloscope
for peak-peak and time of 
ight measurement.
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The amplitude of the input signal could be varied from
1 to 100 V at the resonant frequency or at the odd har-
monics of the transmitting crystal. The ultrasonic pulse
was received by the second crystal, ampli�ed and split in
two parts, one of which was used to directly measure the
attenuation by recording the amplitude of the signal on
a TEK460 digital oscilloscope. The second part was split
again in two parts to obtain the 0� and 90� components,
A0� and A90�. They where used to determine the phase
of the signal �:

tan(�) = A0�=A90�: (5)

Once the initial speed of sound was measured at the tem-
perature T0 from the pulse transit time �0, changes in
velocity were calculated from the phase of the received
signal.

�v = l =

�
�0 +

�(T ) � �(T0)

!

�
; (6)

where l is the length of the cell. With typical samples
the changes in velocity of a few parts per million could
be resolved. A second oscilloscope was used to display
the signal on a longer time scale. It registered up to 12
echoes of the signal in the �rst cell but only 3 echoes in
the second one.

D. Thermometry

For temperature measurements, a calibrated Lake
Shore germanium resistor was used. The thermometer
was located inside the base of the cell just outside the
path of the ultrasonic pulses so that the e�ect of the
temperature di�erence between the thermometer site and
the sound path is minimized. After the lowest tempera-
ture (1.0-1.1K) was achieved through pumping by both
the rotary pump and a roots blower, the initial speed of
sound was measured. In the next stage, by closing the
pumping line down the temperature was allowed to in-
crease by �10�4 K/s. Near the lambda-point the rate
was decreased to about 10�6 K/s. During the warm up,
the fountain pump was constantly supplying helium into
dewar beaker up to the lambda-point. After the super-

uid transition, the warmup rate increased to 10�4 K/s
but boiling in the inner dewar did not occur.

III. EXPERIMENTAL RESULTS

Fig.3 shows the results of 5 MHz ultrasound measure-
ments (in the �rst cell) at T=1.1-2.2K in di�erent Im-He
solids (Im = D2, Ne, Kr) just after preparation. Here and
in later �gures we show for comparison the velocity and
attenuation of sound in bulk heliumwhich were measured
in each experiment before accumulating the sample. The

b

a

FIG. 3. The velocity (a) and attenuation (b) of 4.96 MHz
sound in liquid helium : in bulk (�), in D2-He solid (4), in
Ne-He solid (2), in Kr-He solid (�). V0 is the ultrasound ve-
locity at initial temperature for these measurements, T=1.362
K.

attenuation of sound in the presence of Im-He sam-
ples (for such heavy impurities as Ne, Kr) is larger than
in bulk helium at low temperatures and increases rapidly
with temperature, after which it reaches a plateau and at
the �-point it goes through a maximum. Whereas heavy
Im-He samples all have similar characteristic features, the
D2-He solid behaves quite di�erently. In the latter case,
we do not observe any measurable e�ect on the speed of
sound, and attenuation has a behavior similar to that of
bulk liquid helium, although slightly (�1dB/cm) higher.
The samples produced with heavy impurities are much
denser than the ones with the D2 impurity. In the case
of the heavy impurities, investigations become impossi-
ble above temperature in the neighborhood of 1.4 K be-
cause of an extremely high attenuation. We could have
increased the signal by decreasing the distance between
the transducers but the method of collecting the sample
does not allow us to do that. Therefore, in a series of
experiments we introduced pulses with very large (up to
100 V) values of the input amplitude. From the analysis
of attenuation in di�erent Im-He samples it became clear
that D2-(heavy Im)-He samples are, in fact, the most
suitable ones for investigations of mechanisms of attenua-
tion, because they have a relatively small attenuation. In
this work we compare three samples: N2-He, D2-He, and
mixed D2-N2-He. We investigated the stability of these
samples and also the frequency dependence of ultrasound
attenuation. Measurements were performed between 1.0
K and 4.2 K, with special attention to the region near
the �-point. Fig. 4 shows the characteristic temperature
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FIG. 4. The attenuation of 5 MHz ultrasound in liquid
helium: in bulk (�), in D2-He solid (4), in D2-N2-He solid
(prepared without discharge (2), with discharge (solid 2)),
in N2-He solid (�).

dependence of attenuation for these three samples.
The behavior of the attenuation in the D2-N2-He solid
repeats that of the D2-He solid and bulk helium up to
T�1.75 K. Warming up further, it becomes closer to the
behavior of the N2-He solid, i.e. the attenuation increases
and then reaches a plateau.

A. Stability of the structure of Im-He solids.

In this section we discuss the factors a�ecting the
structural stability of Im-He samples. Changes in the
structure should lead to changes in the attenuation of ul-
trasound. Earlier it was discovered that the compression
of samples results in an increase of attenuation [27]. In
this series of experiments we show the impact of warmup
from 1.0 K to 2.2-4.2K on the structure of our samples.

FIG. 5. The attenuation of ultrasound in liquid helium: in
bulk (�), in D2-He solid (after preparation of solid (4), after
crossing �-point and cooling down (solid 4)), D2-N2-He solid
prepared with discharge (after preparation (�), after crossing
�-point and cooling down (solid 2), after warming up to 2.1
K and cooling down (2))

FIG. 6. The attenuation of 3.16 MHz ultrasound in liquid
helium: in bulk (�), D2-N2-He solid (solid 2).

Fig. 5 presents the results of ultrasound measure-
ments for the three samples mentioned above as they
were warmed up in the temperature ranges below or
above T�. We can see that as the sample was heated up
to Tmax<T� and then cooled again, there was no change
in attenuation and therefore the structure did not change.
Crossing T� always led to the small transformations in
the structure registered by a slight increase of sound at-
tenuation. The attenuation preserved its characteristic
features, nevertheless.

Fig. 6 shows the attenuation of ultrasound in liquid he-
lium �lled D2-N2-He solid during warmup from 1 K to 4.2
K. It was found that a sudden drop in attenuation takes
place at 3.4-3.5 K, which is attributed to the change of
structure of this solid. Below this temperature, the sam-
ple occupied the whole cell, but at T�3.5 K a signi�cant
compression of the solid by a factor of 12 was observed.
This is the �rst observation of a spontaneous macroscopic
change of structure of an Im-He sample in liquid helium.
For N2-He without D2, these changes were not observed.

B. Frequency dependence of the sound attenuation.

Fig. 7 presents the frequency dependence of the at-
tenuation of ultrasound in a N2-He sample. Decreasing
the frequency leads to a lower attenuation and also shifts
the point where the attenuation levels o� to a plateau to
higher temperatures. Fig. 8 shows the frequency depen-
dence of attenuation in D2-N2-He sample measured at 3
and 5 MHz. It signi�cantly di�ers from the one observed
in heavy Im-He samples (like N2-He). For the �rst time,
for the D2-N2-He solid, we detected a steady and steep
monotonic increase in the attenuation up to the �-point
without occurrence of a plateau for 5 MHz sound. This
might be explained by the purely high frequency behavior
of the attenuation in this sample. For 3 MHz attenuation
we observed only a slow linear increase in the same

5



FIG. 7. The attenuation of ultrasound in liquid helium: in
bulk (�), in N2-He solid at 3.16 MHz (solid 2), at 5.33 MHz
(2).

temperature range.

C. The behavior of the sound attenuation and the

speed of sound near Tc.

The results of measurements near the �-point for N2

are shown in Fig. 9. Di�erent symbols represent di�erent
samples. The maxima of attenuation near the �-point for
N2-He samples are much broader than for liquid helium,
making the precise determination of the position of the
maxima impossible. We can conclude from this data that
there is no signi�cant shift of the �-point for helium-�lled
porous N2-He solids.

Fig. 10 shows the attenuation of ultrasound (only 5
MHz data is presented) in the mixed D2-N2-He solids.
The width of attenuation peak near the �-point is only
slightly broader than that for pure helium. That makes
it possible to determine the more precise position of the
center of the peak. It appears that the shift of peak with

FIG. 8. The attenuation of ultrasound in liquid helium: in
bulk (�), in D2-N2-He solid at 3.16 MHz (2), at 5.33 MHz
(solid 2).

FIG. 9. The behavior of attenuation of 4.96 MHz sound in
liquid helium near �- point : in bulk (�), in di�erent N2-He
solids (4,2,solid 2). For N2-He solids the attenuation is
shifted by 0, 5 and 10 dBm/cm correspondingly.

respect to bulk helium is �0.2 mK, but at the same
time the reproducibility of the measurements of the
sound attenuation maximum in liquid helium from run
to run is about �0.1 mK. Therefore based on these ex-
periments we can say that even if the shift exists, it is
less than or on the order of 0.2 mK. Note that Fig. 10
re
ects the fact that the attenuation peak in bulk helium
is �0.8 mK below the �-point [30].

IV. DISCUSSION.

A. Velocity of sound in Im-He solids.

Before performing this series of experiments, it was im-
possible to predict the characteristics of sound propaga-
tion in Im-He samples created by introducing impurities
into super
uid helium. According to the existing model,
these Im-He solids represent metastable phases formed

FIG. 10. The behavior of attenuation of ultrasound in liq-
uid helium near �- point : in bulk (�), in di�erent D2-N2-He
solids (4, solid 4). For D2-N2-He solids the attenuation is
shifted by 0, 5 and 10 dBm/cm correspondingly.
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by coalescing Im-He clusters, in which helium is solid-
i�ed as a result of large attractive van der Waals interac-
tions between helium atoms and a central impurity par-
ticle. Therefore under the conditions of compact packing
of these clusters one would expect an increase in elas-
tic modulus for this material and also an increase of the
speed of sound with respect to pure bulk liquid helium.
A discovery of this e�ect was one of the �rst goals of this
experiment. However we were not able to produce sam-
ples for which we could detect an increase in the speed
of sound although we used our standard methods for cre-
ation of Im-He solids [6,7]. On the contrary, we observed
a smaller speed of sound than in super
iud helium. The
only exception were D2-He samples for which the sound
velocity was the same as in helium to great precision. The
observed decrease in the speed of sound can be explained
by the creation of the porous structure of solid helium
around the impurity particles. This is also supported by
the fact that the behavior of the speed of sound resembles
the fast sound mode in porous aerogel [28]. This mode
is intermediate between �rst and fourth sound. Here the
normal component is locked in a very compliant solid
matrix so that the liquid and the aerogel �bers move
together under mechanical and thermal gradients. Mc-
Keena et al. [28] developed a theory explaining the be-
havior of sound modes in aerogel, taking into account
coupling between the normal component and the aero-
gel and its elasticity. The same features are observed in
Im-He samples.

B. Attenuation of sound in Im-He solids.

As we pointed out before, the behavior of the atten-
uation of sound in di�erent heavy Im-He solids has the
same characteristic features. We observe the transition
from the plateau with a small attenuation to the plateau
with a bigger one, which ends with a maximum at the
�-point. This can be explained by the structure of this
porous material, which is characterized by a wide distri-
bution of pore sizes. Among these pores there are large
channels in which the behavior of the helium is close to
bulk helium. The existence of these pores is realistic es-
pecially if we take into account the method of collecting
Im-He solids. This is a highly nonequilibrium process in
which the impurity particles cooled by the helium vapor
enter the super
uid helium where they stick together af-
ter random collisions with each other. So in this process,
as the model of aggregation of the small particles into
clusters predicts [31], highly rami�ed fractal structures
are created.
The accumulation of Im-He sample is characterized by

the existence of a convective 
ow of helium which moves
parts of the created condensate from a location where
impurity particles �rst hit the surface of the helium to
the bottom and to the walls of the cell. Later these small

pieces of porous material stick together to form the Im-
He solid. They do not coalesce homogeneously, however.
Therefore macroscopic voids might be created between
them, which can lead to the formation of large channels
in the �nal condensate. We should notice that this Im-He
solid preserves its form unless removed from the helium.
Then it compresses by 60% [9].

Qualitatively the behavior of attenuation of sound in
samples with this structure can be explained as follows:
At the lowest temperatures the normal component of he-
lium is locked to the solid matrix and the attenuation is
small. Warming leads to a decrease of the viscous pene-
tration depth �visc so that, when it is comparable to the
pore size R of our solid, the decoupling of a portion of the
normal 
uid occurs. Therefore sound attenuation caused
by the friction of the layers of normal 
uid as they be-
come unlocked from the solid matrix begins to increase
rapidly. Let us call the temperature, where this occurs,
T1. Continuous warmup leads to decoupling of helium
in a greater number of pores. We de�ne T2, as the tem-
perature, where the sound propagates only in the large
channels. There helium is almost like bulk helium and
does not feel the e�ect of the walls. In addition sound can
propagate through the smallest pores formed at the ear-
liest stage of the creation of the sample. Helium in these
pores is still locked to the solid matrix and attenuation
is low and almost independent of temperature. This re-
sembles the behavior of attenuation in bulk super
uid
helium.

Calculating viscous penetration depths for T1 and T2

we can �nd the corresponding pore size (�visc=R). These
results, inferred from Fig. 3b and 4, are shown in Tab.
1. Samples produced by injecting heavy impurities in su-
per
uid helium are characterized by the presence of the
pores of large size - from 150 nm to 820 nm. On the other
hand, the D2-N2-He sample has smaller pores - 100nm to
140 nm. It should be pointed out that from the analy-
sis of the lowest temperature part of attenuation, we can
estimate only the pores of larger size where a large at-
tenuation is observed. Information about the smallest
pores is much harder to obtain because after T2, sound
propagates not only through them but also through the
large size channels.

This model is supported by investigation of sound at-
tenuation in the same sample but at di�erent frequencies.
Fig. 7 shows that a decrease in frequency leads to a de-
crease of attenuation. Also T2 shifts to the higher tem-
perature. For both frequencies �visc(T2=1.48K at 5MHz)
is equal to �visc(T2=1.6K at 3MHz) which is in magni-
tude equal to 240 nm.

Im-He samples formed in our experiments have a va-
riety of di�erent volume ratios between the porous part
and the large channels. Compressing these samples leads
to a decrease in the volume of the large channels, which
in turn increases the attenuation, as was detected in the
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FIG. 11. Temperature dependence of ultrasound attenua-
tion divided by (�n!�)

1=2 for D2-N2-He sample at 5.43 MHz
(2) and 3.16 MHz (�)

.

previous experiments [27]. The comparison of attenu-
ation in freshly prepared samples and in those recycled
above T� showed that crossing the � transition always
gives a somewhat larger attenuation caused by the com-
pacti�cation of Im-He solids. A much larger e�ect was
observed in the D2-N2-He sample during warmup to 3.4-
3.5 K where a sudden drop in attenuation was observed.
In addition it was seen visually that the sample volume
changed from 1.7 cm3 to 0.14 cm3. We did not observe
a similar e�ect in N2-He samples. Hence this change
of attenuation is ascribed to the collapse of the porous
structure formed by deuterium molecules. It seems as if
a similar e�ect was detected in the work of Gordon et

al. [32], where a signi�cant decrease of concentration of
deuterium atoms contained in a D2-Ne-He sample was
registered during the warmup from 1.8 K to 4.2 K.
Analysis of sound propagation in Im-He solids shows

that a distribution of the channels in super
uid helium is
present, including very large channels, in which the he-
lium behavior is close to that of bulk helium. Although
the speed and attenuation of sound did not reveal any
substantial suppression of Tc in N2-He samples, we dis-
covered a very small shift in D2-N2-He samples, on the
order of 0.2 mK which is similar to that in a very light
aerogel. In addition, a small broadening of the attenua-
tion peak was detected for N2-He solid near the �-point.
The width of these peaks gives us information about the
smallest pores in the samples. Using Josephson's relation
[33] for helium in the channels of Im-He solids, namely

�(t) = �0 j t j��= kBTcm
2

�h2�s(t)
(7)

we can �nd the correlation length at the temperature
where the broadening of the attenuation peak starts. At
this temperature T , the super
uidity in the pores (where
the pore radius R=�(T )) starts breaking up. In equa-
tion (7) m, kB and �h are the mass of a helium atom,

Boltzmann's constant and Planck's constant respectively.
From Fig. 7 we can say that the onset of broadening of
the attenuation peak is at T�2.1 K, which gives the char-
acteristic size of the pores from the argument above as
R�8nm. This is reasonably close to 6�2nm, the size of
the clusters from which our Im-He solids are built [15].
Under certain favorable circumstances we were able

to produce samples without any of the large channels
and in this case we did not observe the plateau in the
temperature dependence of the attenuation (see Fig. 8).
This idea was checked by plotting attenuation divided by
(�n!�)1=2 as shown in Fig. 11. The constant straight line
above T� 1.6 K describes the high frequency behavior of
helium in this particular porous sample, which implies
that the energy loss is occurring on the entire surface
in a thin layer of thickness �visc. At a lower frequency
this behavior starts at a higher temperature because the
viscous penetration length is larger. If we compare the
temperatures at which the graph in Fig. 11 levels o� to
a straight line, we get the same value of �visc�180 nm
for 3 and 5 MHz ultrasound.

V. SUMMARY OF ULTRASOUND STUDIES.

Im-He solids have opened up a variety of intriguing
possibilities for experimental investigations of the quan-
tum properties of helium, as well as for studying atoms,
molecules and small clusters stabilized in solidi�ed he-
lium. These studies provide a new perspective for matrix
isolation in solidi�ed helium. The big advantage of the
Im-He solids is that a large variety of atoms or molecules
can be used to build the \backbone" of the Im-He sam-
ples. It also appears that, depending on the preparation
conditions, samples with di�erent nanostructures can be
prepared. To understand the properties of the Im-He
samples it is necessary to determine their microscopic
structure.
In this work investigations of the velocity and attenu-

ation of ultrasound was used to study the characteristics
of Im-He samples formed by introducing di�erent impu-
rities in the volume of super
uid helium. For helium in
Im-He samples the speed of sound is a little smaller than
in bulk helium, and its temperature dependence is close
to the fast sound mode in light aerogel [28]. The char-
acter of attenuation of ultrasound in helium in Im-He
samples is di�erent from that in other porous materials
like Vycor, porous gold, aerogel. The temperature de-
pendence of ultrasound attenuation in D2-He samples is
close to that in bulk helium whereas it is considerably
di�erent from the attenuation in heavy Im-He samples.
This allows us to grow mixed solids, such as D2-N2-He,
in which the attenuation can be regulated by the content
of the gasous mixture. For these mixed samples we pro-
duced and investigated the most 'perfect' porous solids,
which do not contain large channels of bulk helium.
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From the analysis of attenuation of ultrasound in Im-
He samples, we conclude that they have a wide distribu-
tion of pore sizes between 8 nm and 800 nm, as well as
large channels in which the behavior of helium is close to
that of bulk liquid helium.
We investigated the behavior of the velocity and at-

tenuation of ultrasound in Im-He samples near the �-
point where a broadening of the �-peak is observed. The
broadening increases with increasing sample density. A
small shift of the transition temperature (�0.2mK) was
observed for D2-N2-He samples.

For a better understanding of the microscopic struc-
ture of Im-He samples, a study of low angle x-ray scat-
tering might be very helpful. The similarity between the
behavior of ultrasound in Im-He samples and in aerogel
suggests the possibility of a fractal structure for Im-He
solids. For studies of the critical behavior of helium in
Im-He samples, investigations of second sound (low fre-
quency sound) are the most appealing. We believe that
this will allow the observation of the slow sound mode
similar to the one observed in aerogel [28] and also the
determination of the critical exponent for di�erent Im-He
solids.

VI. MAGNETIC RESONANCE STUDIES OF

D-HE SOLIDS.

A. Background.

In this section we discuss the possibility of perform-
ing hyper�ne resonance experiments on helium-impurity
solids containing atomic deuterium (D) as the primary
impurity. The D-He solid is of particular interest because
of the low mass of the deuterium atom, leading to the
expectation that the properties of these solids would be
dominated by zero point motion. Thus we may consider
the D-He solid to be an extreme quantum solid. It would
also be desirable to form H-He solids, but unfortunately
it is di�cult to introduce and maintain a population of
hydrogen atoms in these solids.

Magnetic resonance experiments, in general, are pow-
erful probes of the nature of impurity-helium solids for
the case of magnetic impurities. They provide a means to
determine the impurity atom concentration via a study of
the signal strength. Line width and T2 studies can be in-
terpreted in terms of the separation between the impuri-
ties, since in homogeneous magnetic �elds the linwidth is
associated mainlywith dipole-dipole interactions. Pulsed
magnetic resonance methods can be used to determine
spin di�usion in dilute samples which are not dominated
by T2 e�ects. The Chernogolovka group [32] has per-
formed an extensive series of electron paramagnetic res-
onance experiments on D-He solids using CW methods
at 10 GHz (X-band). They indeed were able to measure

2

8

7

6

5

4

3

1

FIG. 12. The low temperature part of the apparatus: 1-
quartz dewar beaker, 2- super
uid helium, 3- quartz cell, 4-
superconducting solenoid, 5- tuning ring, 6- split-ring res-
onator, 7- Im-He sample, 8- coupling loop

D atom concentration up to 1018 atoms per cm3. They
also studied the line widths for various deuterium atom
concentrations, and showed that the line widths were
broadened appreciably for high D atom concentrations.
In the present work we describe the application of the

hyper�ne resonance method to study the recombination
of these atoms and their relaxation times in solid D-D2-
He systems. Determination of T1; T2 and spin di�usion
will probe the local environment and transport of the
deuterium atoms.
The D atom densities in experiments on gaseous

atomic deuterium were severely limited by surface re-
combination. In the solid samples we are studying, the
atomic densities are much larger, but the resonance lines
are broadened by magnetic dipolar interactions between
neighboring deuterium atoms.

B. Experimental Setup

To produce deuterium atoms, a mixture of D2-He was
passed through a high frequency discharge. The resulting
D-D2-He mixture struck the surface of super
uid helium
and small solidi�ed clusters then formed a porous net-
work of D-D2-He solid [27].
Fig. 12 shows the low temperature part of appara-

tus. The sample is accumulated in the cylindrical part
of an open quartz cell fully occupying the central bore
of a split-ring resonator. The resonator design, previ-
ously described by Nunes [34], is a copper cylinder (2
cm long and 1 cm in diameter) with a single longitudinal
slot containing a rectangular piece of copper laminated
capton (about 0.1 mm thick). To have a resonance close
to the hyper�ne frequency (�309 MHz) we trimmed the
laminate with a pair of scissors. For �ne tuning in situ,
a movable metallic ring, which varied the resonant fre-
quency by changing the e�ective inductance of the res-
onator, was used. The adjustable range of the resonator
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FIG. 13. Energy level diagram of atomic deuterium in a
magnetic �eld.

was about 3 MHz. The Q increased from about 30 at
room temperature to 3�103 at 4.2K and did not change
noticeably below that temperature. The resonator was
coupled to the external circuit through a small coupling
loop in the bottom part of the resonator. To achieve a
better coupling an external tuning trombone was used.
When the temperature was stabilized near 1.6 K �nal ad-
justments of the coupling and the frequency were made.
A superconducting solenoid producing a bias �eld for hy-
per�ne resonance was placed around the resonator. The
whole assembly described above was immersed in super-

uid helium in a small dewar beaker, contained in a larger
dewar partially �lled with super
uid He.

C. Hyper�ne resonance and search for FID.

We are investigating the pulsed magnetic resonance
transition between the �(F = 1=2;mF = �1=2) and
�(F = 3=2;mF = �1=2) hyper�ne levels to observe D
atoms (see Fig. 13). This is a longitudinal transition,
which means that the bias �eld and the oscillating mag-
netic �eld are parallel. The resonance frequency of the
� ! � transition depends on the applied static �eld near
B0 according to the equation :

f = f0 + c(B � B0)
2 (8)

where f0=308.66092 MHz and c=1272.859 kHz/mT2.
We use this transition near the minimum of the energy
splitting (at B0=3.893 mT as seen in Fig. 2) to minimize
the e�ect of the magnetic �eld inhomogeneity.
In the present experiments we used two di�erent

gas mixtures to produce stabilized deuterium atoms:
D2:He=1:100 and D2:Ne:He=1:4:500. After a collection
of the sample was �nished, we lowered the cell inside the
resonator and performed a �nal tuning of the resonator
to the resonant frequency fr. In searching for the free
induction decay (FID) from the � ! � hyper�ne transi-
tion we applied �/2 pulses to maximize the signal. The
power necessary for a �/2 pulse is calculated from :

P�=2 = Vc
�!

2Q
(
1

2
t
)2; (9)

where Vc is the volume of the cavity and 
 is the electron
gyromagnetic ratio. For a t = 10�sec pulse duration the
�/2 tipping pulse is at a power level of 7.5 �W.

A heterodyne spectrometer was used in our experiment
[34]. In our search for a FID we slowly scanned the bias
magnetic �eld from 40 to 60 G (at the rate �0.1G/s) at
�xed frequency fr . Then we changed fr and repeated
this procedure again. We varied fr from 307.5 MHz to
310.5 MHz because the behavior of the hyper�ne reso-
nance of deuterium in the solid matrix di�ers from the
one for free deuterium atoms in a gaseous phase. Knight
et. al. [35], for example, showed that the hyper�ne line
of D atoms in solid Ne, Ar and Xe can shift by as much
as 1%. Unfortunately our search did not yield a positive
result. Below we discuss why we failed to �nd a FID
signal and what we have to do next to reach our goal.

D. Discussion

Earlier investigations of deuterium atoms stabilized in
helium [32] showed that it is possible to reach very stable
high relative concentrations of D atoms with a character-
istic decay time more than 3600 sec. This result di�ers
signi�cantly from experiments with gaseous deuterium ,
where it was impossible to reach concentrations higher
than about 1014 cm�3 because of the high recombina-
tion rate of deuterium . On the other hand, the D-D2-
He solid formed in our experiment is a quantum solid.
The large zero point oscillations of D atoms suggests a
high speed of quantum di�usion of deuterium in solid-
i�ed He. ESR experiments showed that a relative con-
centration of deuterium atoms in molecular deuterium
can reach [D]/[D2]=0.5% [32]. D atoms were most likely
stabilized in the small clusters of molecular deuterium
surrounded by solidi�ed helium. The local concentration
of deuterium atoms is expected to be considerably larger
than the average concentration characteristic for this ex-
tremely porous structure. If the density of molecular
deuterium in helium (as in the case of heavier impuri-
ties [15], like Ne and N2) is 1020 cm�3, then the average
concentration of deuterium atoms is about 5�1017 cm�3.
Therefore the expected width the of magnetic resonance
line due to dipole-dipole interactions is

�H =
2�2

3
p
3
� � n � 0:04G; (10)

� - Bohr magneton, n - concentration of deuterium
atoms. Experimentally a much larger ESR linewidth of
5.6 G was observed [32]. This corresponds to local con-
centrations of �8�1019cm�3.

10



We used a similar sample for hyper�ne resonance stud-
ies. With �H=5.6 G (near the minimum of hyper-
�ne level splitting at B=B0), equation (8) gives �f =
f � f0=400kHz. The large local concentration of D
atoms corresponds to a value of T2 in our sample of
T2 = 1=2��f = 0:5�s, which is shorter than our res-
onator ring down time � = Q=! = 1:5�s (Q = 3 � 103).
Therefore our search for the FID in our deuterium-helium
sample did not give a signal. This supports the argu-
ment about the uneven distribution of deuterium atoms
in D-D2-He samples and the presence of regions with high
local concentrations of deuterium atoms. The creation
of samples with much smaller local concentrations of D
will allow us to increase T2 in this system and hopefully
observe a FID signal. We are planning to investigate
samples obtained by condensation of a diluted gas mix-
ture (D2:Ne:He=1:10

3:105). In these solids atoms of deu-
terium will be diluted by Ne atoms. The local concen-
tration of D atoms will be �1019 cm�3 giving a charac-
teristic T2 of order 10 �s, which we should be able to
observe.
In addition we are in the �nal stage of preparing a new

series of experiments using a pulsed NMR method ( 5
MHz) for investigation of molecular deuterium in D2-He
samples and also CW ESR (X-band) for exploration of
deuterium atoms stabilized in helium.
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Transient processes in normal to superfluid transition
in the presence and absence of gravity

Akira Onuki
Kyoto University

I would like to discuss how a normal fluid state is changed into a superfluid
state. For example, if a bottom boundary is cooled through the lambda
transition, a superfluid region expands from the bottom in the upward
direction.  There, a strong thermal counterflow is transiently induced to
subtract entropy stored in the upper normal fluid region.  In gravity the
resultant vortex line density can attain the theoretical maximum if measured in
units of the correlation length. We discuss how gravity affects such vortices
and controls the speed of the normal fluid expansion.



Experimental Evidence For The Josephson Effect In Superfluid 4He

Dave Pearson, JPL

We present here preliminary data that we believe to be the first experimental
observation of the Josephson effect in 4He.  The flow of superfluid 4He
through a weak link was studied in a double-holed Helmholtz oscillator. The
weak link consisted of an array of apertures, each of which was in the shape of
a slit with a width of ~0.17 micron.  The oscillator was driven at resonance
and the amplitude and frequency of the oscillations were measured. The
dependence of the resonance frequency on the amplitude of oscillations is
analyzed to give the current-phase relationship through the weak link.  At
temperatures close to the lambda transition, an almost sinusoidal I(phi) is
observed.
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Figure 1: The effective exponents γ−eff for t < 0 (left side) and γ+
eff for t > 0

(right side) as a function of |t|/G(+,−)(χ). This figure has been reproduced
from the paper by Luijten and Binder where the symbols (Monte Carlo calcu-
lations) and the curves ( predictions ”BB”,”BK” and approximation “App”)
are described.
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Figure 2: Experimental reduced susceptibility (χ∗) data from for 3He above
and below Tc (upper and lower figures) versus |t| The references are respec-
tively Agosta:[18];WM:[17]; Pittman:[20]; Zhong:[19] taken at the JPL labo-
ratory
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á}Õ­í�Ô�S�RØ×aÜ>SØScUXQØÕ­ÖDí@Õ­Ö{SØUZÖDR�Õ­SCW½Õ­R�P�ã�RØUZQ�Ù�UXâýã�W¯RØá­P�évá­W½RØ×ZÜYÖDÖDÕ­ÖDíNSØÔDU�ÙYUZQ�ScÕ}×ZÜYáÄÚæP�R�Õ­SØÕ}P�Ö�õ �CÖÍSØÔDU%ÚDQ�UZR�UZÖ�S
ÜYÖ
Ü�á­WiRØÕ­RZñDScÔ�UNâ
Ü>ShÜ½ã{WVëiÛFÕ¢ScÔìUXS�ÜYá�î�ï � ð
ÜYãÄP�Ù�U � ² Ô
ÜaÙ�U�ÖDPYS�ãæUXUZÖGå�RØUZâzñÄãÄUZ×ZÜYåDR�UNScÔ�UZÕ}QvR�×aÜ�S�ScUZQ;Õ}R
áeÜ�QØí�UXQ�ScÔDÜYÖ ScÔ
Ü>S�PYÝ6ScÔ�UyÛFP�Q�U@Q�UZ×ZUXÖ�Sfâ
Ü�ShÜèã�W 
 �å�S�ScÕ}Ö�í�UZQ�ÜYÖDâ?ûÈÜYÖ�ÖDUZá­á¥î�ï �YðºõNO;P�éHU¬Ù�UZQ�é�UyÖDPYSØU
ScÔDÜ�S�Õ}ÖóQ�UXÝ%î�ï � ðnSØÔDUyÜYÛ¯ÚDá}Õ¢ScåDâ�U@QcÜ>ScÕ}PÍÕ}R�% ÿW >�% �W J �Dõ¢ï�ñzévÔDÕ­×hÔ?Õ­R�ÖDPYS�Ý¤Ü�Q%ÝÞQØP�Û ScÔ�UyÚDQØUXâDÕ}×¬ScÕ}PYÖDRZõ
��Ý
ScÔDU�â
Ü>ShÜyPYÝ
QØU¬Ý¥î�ï �Yð5Ü�ãæP�Ù�U � ² ÜYQØU�×XP�ÛÇãDÕ­ÖDUZâçévÕ­SØÔèScÔDPYRØUfãæUXá}P�é � ² î�ï � ðºñ
ÜyQcÜ�SØÕ}PÇPYÝ � õ48 5 n�õ4�½Õ}R
P�ã�ScÜYÕ}Ö�UZâìã�WçàDSØSØÕ}ÖDíyãÄPYScÔìR�UXScR;PYÝ�â
Ü�ScÜ½SØP:� �Bõ�÷�õ6Ó¥ÔDUNÜYÛ¯ÚDá}Õ¢ScåDâDUXR¥ÜYQ�U�á­Õ}R�ScUZâçÕ­ÖìÓÃÜYã�á}U��hõ

Ó¥ÔDU�ÛÍÜ>ô�Õ­ÛÇåDÛ Ù�ÜYá­åDUfPYÝ�þ�ÿ?Ü�S"B ² ÝÞQ�P�Û Õ­RØPYSØÔDUZQ�Û â
Ü�ScÜFÜYãÄP�Ù�U � ² Õ}RvP�ã�ShÜYÕ­ÖDUZâçévÕ­SØÔGÜ½ÔDÕ­í�ÔDUZQ
ÚDQ�UZ×ZÕ­RØÕ­P�ÖVSØÔ
ÜYÖ Õ­R�ScÔ�U@U¬ôiSØQcÜYÚÄP�áeÜ>ScÕ}PYÖVPYÝnþ � ScPÍSØÔDU@×XP�U�ô�Õ­R�SØUZÖD×XUy×ZåDQ�Ù�UÇãÄUZá­P,é � ² õ;ê%R�Û¯UZÖ�ScÕ­P�ÖDUXâ
ÜYãÄP�Ù�UYñ
Õ­SfÕ­R�U¬ô�ÚÄUZ×XSØUZâ?ÝÞQØP�Û*SØÔDU �CRØÕ­ÖDíìÛFPiâDUZá�ScÔ
Ü�S�þ � ��� J þ�� Â�� õ���U¬SfScÔDUXQØU½×aÜYÖ?ãÄUFÜ�ÚDÚDQØUX×ZÕ}ÜYãDá}U
RØ×ZÜ�SØSØUZQ/Õ}Ö½ãÄPYScÔ½âDU¬ScUXQØÛ¯Õ}Ö
Ü�SØÕ}P�Ö�RnévÔDÕ}×hÔ¯QØU¬ä
UZ×¬ScR/ScÔDUvåDÖD×XUZQ�ShÜYÕ­Ö{SØÕ}UXR�ãÄPYSØÔ¯Õ­ÖyScÔDUvâDÕ¢òzUXQØUZÖ�SØÕeÜ�SØÕ}P�ÖDRÃPYÝ
ScÔ�U B ��� ��â
Ü>ShÜÇRØU¬ScR¥Ü�ÖDâìÜYá}R�PÇÕ}ÖFScÔDU%Ý¤Ü�×XScPYQ�B dH
��� ñ�P�Q;B dF Â � õ6Ó¥ÔDU�Q�UZR�åDá­SØR¥ÜYQØU%ÚDQØUXRØUZÖ�SØUZâVÜYRÈQØUXâDåD×XUZâ
�{å
ÜYÖ�ScÕ¢ScÕ­UZR¥þ�� : þ ��² >EB d² ñDévÔDUZQ�U�SØÔDUf×ZQ�Õ­ScÕ­×aÜYáæÚ
ÜYQØÜYÛFU¬ScUXQØR¥Ô
ÜaÙ�U�ãÄUZUZÖVá}Õ­R�ScUXâçÕ}ÖìQØU¬Ý&õ
î ÷,ð

�CÖGScÔ�UNU�ô�ÚÄUZQ�Õ}Û¯UZÖ�ScR;évÕ­SØÔ ��UfévÔDUXQØU@PYÚ�ScÕ­×aÜYá5Û¯UXScÔ�P�âDRvé�UZQØUNåDRØUXâ�ñæSØÔDU�âDUXSØUZQØÛ¯Õ}ÖDÜ�ScÕ­P�ÖìPYÝnScÔ�U
×ZQ�Õ­SØÕ}×aÜ�áÄSØUZÛ¯ÚæUXQcÜ�SØåDQØU�ÔDÜYRÈãÄUZUZÖýÜY×hÔ�Õ}UXÙYUZâçÝÞP�QHSØÔDU�þ?ÛFUZÜYRØå�QØUZÛ¯UZÖ�SØR¥ã{WÍP�ãDR�UZQ�ÙiÕ­ÖDíyScÔDU�â�Õ}RcÜ�ÚDÚæUZÜYQ�ß
ÜYÖD×XUHPYÝ�ScÔDU�ÛFUXÖDÕ}R�×ZåDRXñ�ÜYÖ�â@ã�WNÜ;àDS
ScP � �Bõ ÷Çî�ï �Yðºõ�Ó¥ÔDU�×ZPiU¬ô�Õ}R�ScUXÖD×ZUÈ×XåDQ�ÙYUHâ
Ü>ShÜ;é�UZQ�U�àDS�ScUXâ@ScP � �Bõ¢ï
îø÷�÷>ðºõ ��ÖyScÔDU;ÜaÙ�UXQcÜYí�UÈSØÔDUZR�U�â�UXScUXQØÛ¯Õ}Ö
Ü>ScÕ}PYÖDR�é�UZQ�U;ÛFÜYâDUÈévÕ¢ScÔ½ÜYÖ½åDÖ�×ZUZQ�ShÜYÕ­Ö�SCWyPYÝ	�19�� 5 ��
 ï n ��� õ
%�Wè×XP�Ö�ScQØÜYR�SvÕ­ÖèScÔDU�U�ô�ÚÄUZQ�Õ}Û¯UZÖ�ScRÈévÕ¢ScÔç´hO;U�évÕ­SØÔDP�å�S¥PYÚ�ScÕ­×aÜYáæÜY×Z×XUZR�RZñ
ScÔDU�å�ÖD×ZUXQ�ShÜ�Õ}Ö�SCWèÕ­Ö � ² Õ}R

Û¯P�QØU�Õ­ÛFÚÄP�Q�ScÜYÖ�Saõc��S�Õ­R¥ÚDQØPYã
ÜYãDá¢WèRØÛFÜYá­á}UZR�S¥Õ}ÖçSØÔDUfU¬ô�ÚæUXQØÕ­ÛFUXÖ{SØRvã{W >/Õ¢SØSØÛÍÜYÖçU¬S ÜYá^õ îø÷.n�ðzévÔDUZQ�U � ²
éHÜYR�â�UXScUXQØÛ¯Õ}ÖDUXâVÚ�QØÕ}Ö�×ZÕ}ÚDÜYá}á¢W¯ÝÞQ�P�Û Û¯UaÜYR�åDQØUXÛFUXÖ�ScRvãæUXá}P�é � ² � ×ZPiU¬ô�Õ}R�ScUXÖD×ZU�×ZåDQ�Ù�U �¬ñÄÜYÖDâìévÔDUZQ�U � ²
éHÜYR�P�ã�ScÜYÕ}ÖDUXâ ÝÞQØP�Û*ÜÍàDS�PYÝ � �Bõ­ïYñ�Ü�R�âDUZR�×ZQ�Õ}ãÄUZâ�Õ}Ö SØÔ
Ü�S�Ú
Ü�ÚæUXQZõÇO;UZQ�UÇScÔDUy×XáeÜYÕ­ÛFUXâGåDÖD×XUZQ�ShÜYÕ­Ö{SCW
Õ}R�� � ² > � ² � 5 3 
 ï n ��� õ �CÖùScÔ�UçP�á}âDUXQÇÛ¯UaÜYR�åDQØUXÛFUXÖ{SØRyPYÝ;þ'ÝÞQ�P�Û Õ­RØPYSØÔDUZQ�ÛFR@ã{W 8�Ü�á}áeÜ�×ZUèÜ�ÖDâ
TVU¬W�UZQFî�ï 0>ðºñ�ScÔDUy×hÔ�P�Õ}×XUyPYÝ � ² éÈÜ�R�P�ã�ShÜ�Õ}ÖDUXâ?ã�WGU¬ôiScQØÜYÚæPYáeÜ�SØÕ}P�Ö P�Ý�ãÄPYSØÔó×ZPiU¬ô�Õ}R�ScUZÖ�×ZU¯×ZåDQ�Ù�U½â
Ü�ScÜ
ÜYÖDâ�×XP�ÛFÚ�QØUZR�RØÕ­ãDÕ}á­Õ­SCWVâ
Ü�ShÜ�ñ5ÜYÖDâ?ã
ÜYRØUXâ�PYÖ�ÜçR�Õ}Û¯ÚDá}UÇÚÄP�éHUXQfáeÜaé évÕ¢ScÔ�UXòæUZ×¬ScÕ¢Ù�U¯U¬ô�ÚæPYÖDUZÖ�ScRXõ½Ó¥ÔDU
åDÖD×XUZQ�ShÜYÕ­Ö{SCWAéÈÜYR½×XáeÜYÕ­ÛFUXâ�ScP�ãÄU
� � ² > � ² � 5 p 
 ï n ���ZõAÓ¥ÔDUìåDR�UýP�Ý;SØÔDÕ}RyÚÄP�éHUXQyáeÜaé á}UZâ�SØP?Ü
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R�WiR�ScUZÛFÜ�SØÕ}×ÇUXQØQØPYQ�Õ}Ö � ² évÔDÕ}×hÔóéHÜYR�UXÙiÕ}â�UZÖD×XUZâ?ã{WGâDUXÙiÕ}Ü�ScÕ­P�ÖDR%ÝÞQ�P�Û SØÔDUy×ZPYÛFÚDQ�UZR�RØÕ}ã�Õ}á}Õ¢SCWìâ
Ü�ScÜèPYÝ
QØU¬Ý&õnîø÷.n�ðºñæÜYR%R�ÔDP�évÖ Õ}Ö �ÃÕ}íDõ¢ï�PYÝ;îø÷.n�ðºõX�CÖGSØÔDU@þ"Û¯UaÜYR�åDQØUXÛFUXÖ�ScR%ã�W ûHÔ
ÜYR�UÇÜYÖDâ��zÕ}Û¯ÛFUXQØÛFÜYÖ�î ÷�ïXð^ñ
ÜYá­RØP@ÝÞQ�P�Û Õ}RØP�ScÔDUXQØÛ¯RZñ�SØÔDU�âDU¬ScUXQØÛ¯Õ}Ö
Ü�SØÕ}P�ÖFPYÝ � ² éHÜYR¥âDPYÖDU�Õ}ÖèÜÇRØÕ}Û¯Õ}á}ÜYQnéHÜ�WèÜYRÈÕ­ÖèQØU¬ÝÈî�ï 0>ðºõ��CÖèScÔ�U
Û¯P�R�S/Q�UZ×ZUXÖ�S�Û¯UaÜ�RØåDQ�UZÛ¯UZÖ�ScR/PYÝæþVÝÞQ�P�Û¼Õ­RØPYSØÔDUZQ�ÛFR6ã�WÇSØÔDU;T ��ë�Ó6�ASØUaÜYÛ¼Ü�S��<>��ùî�ï 3�ð^ñ�SØÔDUÈÙ�ÜYá}å�U¥PYÝ
� ² éHÜYR¥âDU¬ScUXQØÛ¯Õ}ÖDUXâèÝÞQØP�Û ÜNàDSvPYÝ�SØÔDU�þ?â
Ü�ShÜyÜ�ãæP�Ù�U � ² ScP � �Bõ p@évÕ­SØÔçÜÇR�WiR�SØUZÛFÜ�ScÕ­×�åDÖD×XUZQ�ShÜYÕ­Ö{SCW
PYÝ � � ² > � ² � 5 ïIf � 
 ï n ���;Õ}Ö�� ² � ��õ��zÔDP�ÖDí�ñDÚDQØÕ¢Ù�Ü�ScU�×XP�ÛFÛ@åDÖDÕ}×ZÜ�ScÕ­P�Ö ��õ

Ék�èÊ�Ð��¥Ì�� �vÎ��X� �ÈËFÌ��¥Ì;ÉZÏfË��@ËFÐ �!ÏfËÍÌ"�.Òi�@Î ��Ï Òi���/Ò�Ñ ���¥Ì�ÉZÏ�Ë �

�CÖ��ÃÕ}íDõ ÷fSØÔDU�R�åDRØ×XUZÚ�SØÕ}ãDÕ­á}Õ­SCW¯â
Ü>ShÜ@ÝÞP�Q ´ O�U%ÝÞQ�P�Û Q�UXÝÞRfî�ï 0�ñ ÷.n�ñ¢ï 3�ñ¢ï 8�ðæÜYQ�U�ÚDQ�UZRØUXÖ�ScUZâzñÄãÄPYSØÔìÜYãæP�ÙYU
ÜYÖDâýãÄUZá}P�é � ² ñ
R�×aÜYá­UZâýã�WçScÔDUfá}UZÜYâDÕ­ÖDíyRØÕ­ÖDí�åDá}ÜYQØÕ¢SCW ' 9 ' �)({õ/Ó¥ÔDU�â
Ü�ScÜ½P�ÝÃQ�UXÝvîø÷�ïZð5á­Õ}U�R�WiR�ScUXÛÍÜ>ScÕ}×ZÜYá}á¢W
åDÚ8ScP ÷.n�� ãÄUZá­P,é ScÔDU�PYSØÔDUZQýâ
Ü�ScÜ R�UXSØRGÜYÖ�â Ô
ÜaÙ�U?ÖDPYSýãÄUZUXÖ Õ}Ö�×Zá}å�âDUZâ8Õ}Ö!ScÔDU�ÚDá­PYSìScPIÜaÙ�P�Õ­â
P�Ù�UXQØ×ZQ�P�évâDÕ}ÖDíìScÔ�U½àDí�åDQØU�õÇÓ¥ÔDU½â
Ü�ScÜçPYÝHQ�UXÝ�î ÷)n�ð6×aÜ�Ö?ãÄUyÛFÜYâDUÇScPýÜYíYQØUZUÇé�UZá­áÃévÕ­SØÔóScÔDP�R�U½PYÝ�QØUXÝ&õ
î�ï 3�ðºñÃÕ­ÝHScÔDUXÕ}Q�QØUZR�ÚæUX×XSØÕ­Ù�UèÙ�ÜYá­åDUZR�PYÝ
� ² ÜYQ�UÍRØá­Õ}í�Ô�SØá­WóR�ÔDÕ­ÝsSØUZâAé�UZá­á�évÕ¢ScÔDÕ­Ö�ScÔ�UÍR�ScÜ�ScUXâ�åDÖD×XUZQ�ShÜYÕ­Ö{SCW
Û¯UZÖ�ScÕ­P�ÖDUZâ�ÜYãÄP�Ù�UYõÍÓ¥ÔDUFR�ÔDÕ­ÝsSØR@Ü�QØU¯ÜYRfÝÞP�á}á­P,évR�� � � ² > � ² J \0p 
 ï n ���fÝÞP�Qfâ
Ü�ShÜìPYÝHQØUXÝ&õ�î�ï 3�ð�Ü�ÖDâ
� � ² > � ² J <Xp 
 ï n ���ÍÝÞPYQèâ
Ü�ScÜAPYÝfQØU¬Ý&õ�îø÷.n�ðºõ %�WI×ZP�Û@ãDÕ}ÖDÕ­ÖDí�SØÔDUGSCé�PùRØU¬ScRçPYÝfâ
Ü>ShÜAévÕ­SØÔ ScÔ�U
ÛÇå�SØå
ÜYá­á­WçR�ÔDÕ­ÝsSØUZâ � ² ñ�ÜFà�S%ScP � �Bõf÷¯í�Õ­ÙYUZR % ÿW J n�õ¢ï � � õ �
P�Q�ÜÍí�Õ­ÙYUZÖ R�UXS�P�Ý6U¬ô�ÚÄUZQØÕ­ÛFUXÖ�ScRZñ évÔDUXQØU
â
Ü�ScÜ½ÜYãæP�ÙYUNÜ�ÖDâìãæUXá}P�é � ² é�UZQ�UfP�ã�ShÜ�Õ}ÖDUXâ�ñ�ScÔ�U�RØÜYÛ¯U�×hÔDP�Õ}×XUfPYÝ � ² éÈÜYRvÕ­ÛFÚDá­UZÛ¯UZÖ�ScUXâ�õnÓ¥ÔDUfUXQØQØPYQ
Õ}Ö � ² Õ}Ö�ScÔ�UFU�ô�ÚÄUZQ�Õ}Û¯UZÖ�ScR�PYÝHQØUXÝfî�ï 0,ð6éÈÜYR�×ZPYQØQØUX×XSØUZâ�ã�W?ÜYÖAÜYÚDÚDQ�P�ÚDQØÕ}Ü�ScUyR�ÔDÕ­ÝsS � � ² évÕ­ScÔ�Õ}ÖDíçScÔ�U
R�ScÜ�ScUXâóåDÖD×XUZQ�ScÜYÕ}Ö�SCWYñæévÔDÕ­×hÔóQØUZR�åDá­SØUZâ Õ­ÖGScÔ�U@â
Ü�ScÜèÜYãÄP�Ù�U � ² ScPÍá}Õ}U�åDÖDÕ¢ÝÞP�QØÛ¯á­W�� � � ãÄUZá­P,é-SØÔDP�R�U
PYÝ�QØU¬ÝÞRZõ
îø÷.n�ð
ÜYÖDâ�î�ï 3�ðºõ

ÓÃÜ�ãDá}U ��á}Õ­R�SØR
SØÔDUHÜ�ÛFÚDá­Õ­SØåDâDUZR5PYÝ�ScÔDU�á}UZÜYâDÕ}Ö�í;SØUZQØÛ¯R % ÿW ñ<% �W ÜYÖ�â UiW�ñYÜYÖDâ@P�Ý�ScÔ�U�à
Q�R�Sn×XP�QØQ�UZ×¬ScÕ}PYÖ
ScUXQØÛ¯R�% ÿ _ ñ % �_ ÜYÖDâ U _�P�ã�ScÜYÕ}Ö�UZâóã�WóÜèàDS�P�Ý�SØÔDUyâ
Ü�ScÜÍScP/� �Bõ­ï¯QØUXRØÚ�õ � �ÄõÇ÷�õ�Ó¥ÔDUyUZQ�QØP�Q�R�á}Õ}R�ScUXâ
ÜYQ�U½ÜYá}á
R�WiR�SØUZÛFÜ�ScÕ­×Yñ�ÖDP�SfR�ShÜ>ScÕ}R�ScÕ­×aÜYáºõ�Ó¥Ô�U¯×XP�QØQ�UZR�ÚæP�Ö�âDÕ}ÖDíçR�P�åDQ�×ZUZR�PYÝ�â
Ü�ScÜçÜYQØUyá­Õ}R�ScUZâóÕ­Ö ScÔDUyá}ÜYR�S
×ZPYá}åDÛ¯Ö�õ½Ó¥ÔDU¯â
Ü�ShÜèàDSØR�ÝÞPYQ % ÿ _ ÜYÖDâ % �_ Õ­Ö�´cO�U¯ÜYÖDâ�ÝÞP�Q % �_ Õ­Ö �%U � évÕ­SØÔ�ÙYUZQ�W�R�×aÜYÖ�SNâ
Ü�ScÜýÜ�ÖDâ
ÜYÚDÚ�QØUZ×XÕeÜYã�á}U�RØ×ZÜ�SØSØUZQv×Zá­P�RØU�SØP � ² ��é�UZQØU�ÛFÜYâDU�ã�WçRØU¬SØSØÕ}ÖDí½ScÔDUfÔDÕ­í�ÔDUXQÈScUZQ�ÛFR¥Õ­Ö � �Bõvï�ScP �ZUXQØPDõ/Ó
P
ScÔ�Õ}R�ÚDåDQ�ÚæPYRØUYñ�SØÔDUyàDSØSØÕ}ÖDíçéHÜYRfQØUZR�ScQ�Õ}×XSØUZâ�ScPçScÔ�UyQcÜYÖDíYU ' 9 ' �¼÷ 
 ï n � d ñ�évÔDUXQØU¯ÚDQØUXRØåDÛFÜYãDá¢WGScÔ�U
ÔDÕ­í�ÔDUZQ�SØUZQØÛ¯RfÕ}Ö � �iRXõ ï�ñ�÷ � ÜYÖDâ�ScÔDUXQØU¬ÝÞP�QØUFÜYá}R�PìÕ}Ö � �Bõ � ��×ZÜYÖ?ãæU¯ÖDUZíYá}UZ×¬ScUXâ�õ�%HUX×aÜYå�RØUÍP�ÝHScÔ�U
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R�SØQØP�Ö�íÍ×ZPYQØQØUXáeÜ�SØÕ}P�ÖçãÄUXSCé�UZUXÖ ScÔDUNÜYÛ¯ÚDá}Õ¢ScåDâ�UZR¥Õ}ÖìScÔ�UNâ
Ü>ShÜyàDSØSØÕ}ÖDí¯ÚDQØPi×ZUXâDåDQ�UNScP:� �{R@ïNÜYÖDâó÷iñBÜYÖ
åDÖD×XUZQ�ShÜYÕ­Ö{SCW?PYÝHP�ÖDá¢WóRcÜaW � � 5 � � �fÕ­Ö-%�WN×aÜYÖ�ÚDQØPiâDåD×XUÍÜìÛÇåD×hÔ�áeÜYQ�í�UZQfP�ÖDU½PYÝ6� � 5 � n�� ��Õ­Ö-% _�õ
�
P�QÈScÔ�U@û	��û8PYÝ ´ O;U@Ü�ÖDâ��%UYñBÜYÖ�âýÝÞP�Q6% ÿ _ PYÝ �%UYñDSØÔDU�ÜYÛFÚ�á}Õ­SØåDâDUXR¥á}Õ}R�ScUXâýÕ­ÖìQØUXÝÞRNî�ï �Dñ ÷.n�ñ ÷�÷>ð�é�UZQ�U
åDR�UZâ�õ

Ó¥ÔDU ´ O;Uóâ
Ü�ShÜ�ã{W >6Õ­SØSØÛÍÜ�Ö UXS ÜYá^õ ñ¥évÔDÕ}×hÔMQ�UZR�åDá­SèÝÞQ�P�Û ÛFUZÜYRØå�QØÕ}Ö�íAScÔDUGâDUZÖDR�Õ­SCW âDÕ­òæUZQ�UZÖD×XU
ãÄUXSCé�UZUZÖýSCéHP¯RØå�ÚæUXQØÚÄP�RØUXâVR�UZÖDR�P�QØRXñÄR�ÔDP�é-ÜyRØÛFÜYá­á}UZQ�RØ×ZÜ�SØSØUZQv×Zá­P�RØU�SØP � ² ScÔ
Ü�ÖìSØÔDP�R�U�Q�UXÝ&õ5î�ï 3�ðºñDãDå�S
ScÔ�UXW@ÜYQØU�QØUXR�ScQ�Õ}×¬ScUZâÇSØP�SØÔDUHQØÜYÖDí�U 9;� ��
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Figure 3: Experimental susceptibility data for Xe above and below Tc (upper
and lower figures) versus |t|/G(χ(+,−)), fitted to the Monte Carlo calculations
(solid circles LB and lines LB). Dotted line: Renormalization Group (BK) for
Belyakov and Kiselev, referred to in [3]. Experimental data: open squares:
[14], open inverted triangles:[16], solid squares:[15]. Here the χ∗’s have been
divided respectively by Γ+

0 and Γ−0
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Figure 4: Experimental susceptibility data for 3He above and below Tc from
fig.2, (upper and lower figures) versus |t|/G(χ(+,−)), fitted to the Monte Carlo
calculations (solid squares (LB) (t > 0) and solid line (t < 0). Dotted line:
Renormalization Group (BK), as described in [3]. Dotted line labeled MF:
Mean Field asymptote. Experimental data for t > 0: X:[20]; solid circles:[18];
open circles [19]. For t < 0 : WM :[17]; JPL: [19]. Here the χ∗’s have been
divided respectively by Γ+

0 and Γ−0
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Ü�á­WiRØÕ­R/ÜYÚDÚÄUaÜYQ�R�×XP�ÖDR�Õ}R�SØUZÖ�S�évÕ­ScÔySØÔDUvåDÖDÕ­ÙYUZQ�RcÜYá­Õ­SCWÇÚ�QØUZâ�Õ}×XSØÕ}P�Ö½ã
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�CÖ@Ó�ÜYãDá­UZR�ïÈÜYÖDâÇ÷�ñ,ScÔDU 
fÕ­Ö��Zã�åDQØí;Ö{åDÛÇãÄUZQØRÃÜYÖDâNQØUZá­UXÙ�ÜYÖ�S�QcÜ�SØÕ}P�R5ÜYQ�U�á­Õ}R�ScUZâzñYÜYÖ�âNScÔ�U�Q�UZRØå�á­ScR�ÜYQ�U
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RØÕ­ÖD×ZU�Ü¥RcÜ>ScÕ}R�Ý¤ÜY×XSØP�Q�W%UZQ�QØP�Q5×aÜ�á}×Zå�áeÜ�SØÕ}P�Ö�×XP�åDá­â�Ö�PYS5ãæU/âDPYÖDUYõ �CÖNÓ�ÜYãDá­U�÷�ñ,ScÔDU	
 q R5ÜYQ�U6ScÔDP�R�U/P�ã�ShÜ�Õ}ÖDUXâ
ã�WýÜ½à�S�P�ÝÃScÔ�U�âDÜ�ShÜyScP½ScÔDUf×XåDQ�ÙYU@P�ã�ScÜYÕ}Ö�UZâçÝÞQØP�Û TVP�Ö�ScU@ûÈÜYQØá­P½×aÜYá­×ZåDá}Ü�ScÕ­P�ÖDRZõ ��ã�ÙiÕ}P�å�RØá­WèP�ÖDU�PYÝ
ScÔ�UÇí�QØUZÜ�S�Û¯UZQ�Õ­SØR�PYÝ�TGû ×aÜYá­×ZåDá}Ü�ScÕ­P�ÖDR;Õ}RvScPèí�Õ¢Ù�U@ÜÍÛÇåD×hÔ évÕ­âDUZQ�QcÜYÖDíYUÇPYÝ ' 9 ' >.� évÔDUZQ�U@ScÔ�UÇâ
Ü�ScÜ
×aÜ�Ö�ãæU½àDSNScPGÚ�QØUZâ�Õ}×XSØÕ}P�Ö�R�SØÔ
ÜYÖA×ZÜYÖùÜG÷,ß�SØUZQØÛúU�ô�Ú
ÜYÖDR�Õ}P�Ö�R�åD×hÔ"ÜYR � �iRÍïèÜYÖDâ�÷�õìêÈS@SØÔDUÍRØÜYÛFU
ScÕ­ÛFU�ñ�Õ¢SvÕ}R¥Õ}Ö�R�ScQ�åD×XSØÕ­ÙYUfSØP½×ZP�Û¯Ú
ÜYQ�U�ScÔDUfQØUXRØåDá¢ScÕ­ÖDí 
 q R¥P�ã�ScÜYÕ}ÖDUXâçÝÞQØP�Û ãÄPYSØÔýÛ¯UXSØÔDPiâDRZõ

Fluid Γ0 Γ1 B0 B1 G() from Γ
(+−)
1 , B1 Refs.

Xe [+] 0.0577 [+] 1.29±0.2 - - (χ+) 0.006 Guettinger&Cannell
[-] 0.013 [-] 1.4±0.5 (χ−) 0.2 Smith et al.∗

- 1.47 1.17 (CXC) 0.035 Naerger&Balzarini
3He [+] 0.141 [+] 1.5±0.2 (χ+) 0.0044 Pittman et al.∗

[+] 0.150 [+] 0.98 - - (χ+) 0.010 JPL,(Barmatz et al.∗)
[+] 0.145 [+] 1.3±0.2 - - (χ+) 0.006 JPL/Pittman∗

[-] 0.029 [-] 3.6±0.3 (χ−) 0.034 JPL/Wallace ∗

1.02±0.02 0.90±0.1 (CXC) 0.06±0.02 Pittman et al.

Γ+
1 /Γ−1 Γ+

1 /B1

Xe 0.9±0.4 1.1±0.3 Same refs. as above
3He 0.36±0.07 1.4±0.3 JPL/Wallace/Pittman

Theory 0.315±0.013 1.1±0.2 Bagnuls et al.

Table 1: Amplitudes for the expansions in Eqs 1 and 2 for χ+, χ− and CXC,
as obtained from fits in various experiments, and the corresponding Ginzburg
numbers deduced from the amplitudes ai in Eq.6 and similar. The symbol
“ ∗ ” indicates that the expansion was limited to the first correction term
and to |t| < 10−2. The bottom three rows show the comparison between
the experimental and the predicted (universal) ratios of the first correction
amplitudes. For3He, Γ+

1 = 1.3 was used.

Fluid G(χ+) G(χ−) G(CXC) G(χ+)/G(χ−) G(χ+)/G(CXC)
×102 ×102 ×102

Xe 1.8±0.3 10±5 7±2 0.18±0.08 0.26 ±0.06
3He 0.25±0.15 ∗ 3.5±2 7±2 0.07±0.04 0.036±0.02

0.45±0.2 ∗∗ 0.13±0.05 0.064±0.03
Eqs.8 and 9 0.02 → 0.2 0.10±0.02

Bagnuls et al. 0.23±0.01 0.15±0.07
with Eq. 9

Table 2: The Ginzburg numbers, as obtained from fits of the data to Monte
Carlo calculations, and their ratios, with estimated uncertainties, and com-
parison with predictions via Eq. 8 of ref[12] and Eq. 9. Notation indices:
“ * ” obtained with Pittman data and Γ+

0 = 0.140. “ ** ” obtained with
combined Pittman/JPL data and Γ+

0 = 0.145. The numerical values in the
bottom row are those predicted in Ref.[13] with use of Eq.9.
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Coalescence of Levitated He II Drops

George Seidel, C.L. Vicente, C. Kim, and H.J. Maris,
Brown University

We have initiated a study of the coalescence of superfluid helium drops
levitated in a magnetic trap. Drops of up to 2 cm diameter, at temperatures
down to 0.7 K, can be brought into contact with an impact velocity of a few
cm/s. The evolution of the shape of the fluid upon coalescence is recorded with
a high speed CCD camera. Movies of the fluid reveal interesting features of the
motion of the surface.  We a particularly interested in observing the growth of
the neck joining the two drops immediately after contact.  Different theoretical
calculations predict that the growth of the radius of the neck should obey a
scaling law and that toroidal voids should be entrapped during the growth
process. In order to study these phenomena in detail, experiments may have to
be performed on larger drops. Such experiments can only be done in space.



EXperiments Along Coexistence near Tricriticality (EXACT)

Melora Larson(a), Ashutosh Tiwari(b) , Masoud Mohazzab (b), Vladimir Dotsenko (b),
John Panek (a), Al Nash (a),and Norbert Mulders (b)

(a) Jet Propulsion Laboratory, California Institute of Technology
(b) Department of Physics and Astronomy, University of Delaware

Tricritical points are among the few physical systems for which
Renormalization Group theory produces exact predictions. In fact, since D=3 is
the marginal spatial dimension for tricriticality, the associated critical
exponents are  (exact) integer fractions with logarithmic corrections to this
critical behavior.  Therefore, the tricritical point in the helium-3/helium-4
phase diagram offers many unique opportunities to test the understanding of
critical phenomena. To fully test these predictions, the inhomogeneities
introduced by the diverging concentration susceptibility in the presence of
gravity must be removed by performing the experiment in a micro-gravity
environment. We present the results of our ground-based measurements of the
superfluid density and the phase separation boundary.  We have used a pulsed
second sound technique to determine the superfluid density near the tricritical
point. To minimize concentration gradients induced by the earth’s gravitational
field, the experiments were done in a 160mm thin layer of helium, bounded by
two sapphire disks. We analyzed our second sound data within the framework
of a model that explicitly takes into account the boundary conditions as well as
the non-linear nature of the sound propagation in the mixture.  To detect the
phase separation boundary in the helium mixtures, we have developed two
different capacitative sensors, a parallel plate geometry to make bulk
concentration measurements, and an inter-digital capacitor to make local
concentration measurements. The resolution and advantages of these two types
of sensors will be presented along with our preliminary measurements of the
phase separation boundary.

This work is supported by NASA.



Out of Equilibrium Nucleation in First Order Phase Transitions

Charles Elbaum
Brown University

We are studying the transition from superfluid helium-four to the bcc and hcp
solid phases. In this process we are frequently observing nucleation of a non-
equilibrium (metastable) solid phase. After times varying from a fraction of a
second to tens of minutes, the stable phase nucleates (independently) from the
liquid, and the non-equilibrium solid melts. We examined the possibility of
accounting for these events in the context of traditional nucleation theory by
using the known differences between the superfluid and the two solid phases
(stable and metastable). The experimental results, however, are not consistent
with this explanation nor, more generally, with predictions of traditional
nucleation theory. We propose a new model in which the critical nuclei are
initially the same for both solid phases, and in the following stage, before
reaching macroscopic size, these nuclei transform into either the bcc or hcp
phase.



Heat Capacity Enhancement and a New Surface Instability in
Superfluid 4He Under a Heat Current Near the Lambda Transition

Talso Chui, A. W. Harter, R. A. M. Lee, A. Chatto, Xinkai Wu, and D. L. Goodstein
JPL & Caltech

We report on results recently published in Physical Review Letters [1] on the
enhancement of the heat capacity of superfluid 4He under a heat current near
the lambda transition.  The observed enhancement is much larger than
predicted by theory.  We also propose a new way to interpret the data of a
previous experiment on the depressed breakdown temperature of superfluid
helium under a heat current.  In our interpretation these observations may be
accounted for by an instability in the singular Kapitza resistance at the hot
endplate of the thermal conductivity cell, which is different from the
breakdown of bulk superfluidity.

[1] Phys. Rev. Lett., 84, 2195 (2000).



Surface Physics with Helium Crystals in Microgravity

A. V. Babkin, R.V. Duncan, and A.Ya. Parshin, UNM
Y.-M. Liu, JPL

The equilibrium shape of any crystal is controlled by the thermodynamics of its
surface. The microscopic structure of the interfacial boundary is strongly
influenced by its crystallographic orientation, giving rise to a variety of surface
phases. Each of these phases is mirrored in the particular details of the
equilibrium crystal shape. From a practical point of view, a detailed knowledge
of possible surface formations and their thermodynamic properties is of a great
importance - these characteristics are mainly responsible for the growth
properties of a crystal.  However, in conventional solids the intrinsic properties
of the interfaces are always obscured by the transport processes in the bulk
phases.

An exceptional situation is found in the case of helium. The highly mobile
superfluid liquid phase transports heat away quickly and the latent heat of solid
formation is almost zero. As a result, the interface can relax very quickly
making it possible to study directly its equilibrium properties.  Helium is also
an exceptionally pure material since all foreign substances are frozen out. An
isotopic purity of one part in 1015 has been achieved in 4He. The short shape
relaxation time of 4He crystals has enabled systematic experimental and
theoretical studies of both their equilibrium and kinetic properties. However,
since the equilibrium shape of a crystal is strongly affected by gravity, the
interpretation of experimental results remains an extremely complicated task.
This difficulty has led to a significant controversy between existing
experimental observations obtained by various research groups. This
controversy may only be resolved by making new measurements in the
microgravity laboratory.

The proposed flight experiment represents a comprehensive microgravity
investigation of the equilibrium and kinetic properties of the liquid/solid
interface in helium. All experimental and theoretical activities proposed here
are primarily focused on the development of a fundamental understanding of
the interfacial phenomena on the liquid/solid interfaces. Some experiments will
take advantage of microgravity environment to extend the scope and accuracy
of ground-based measurements of the equilibrium and dynamic properties of
crystal surfaces. Other experiments will attempt to test, for the first time, the
universality of the roughening transition temperature as predicted by
Kosterlitz-Thouless theory. Such measurements may only be reliably
accomplished in microgravity.

The important thermodynamic parameters of an interface can be deduced
directly from the equilibrium crystal profile, but only if the crystal is grown in



microgravity. We will show that the scope of measurements can be
significantly extended and their accuracy greatly improved, as compared to
Earth-bound measurements. The results will provide new detailed knowledge
about surface physics and crystallography.

We propose to measure the equilibrium shape of a helium crystal in the
gravity-free environment over a wide temperature interval. In these
measurements, a hierarchy of faceting (roughening) transitions on the crystal
interface will be established and the angular plot of the surface free energy for
each temperature will be determined. The results will be used to verify
fundamental assumptions of modern theory. In microgravity, the critical
behavior near the roughening transition temperatures could be examined with
significantly improved accuracy by broadening the scope of our measurements
toward previously inaccessible crystallographic orientations.

The proposed experiment will also measure fine details of the equilibrium
crystal shape close to a facet edge. These measurements will yield new
information about the microscopic surface organization. Current interfacial
theoretical models will be tested directly on the basis of this information.

We will explore a wide spectrum of crystal growth phenomena. We are
convinced that a faceted helium crystal in microgravity provides an ideal
model to study basic growth mechanisms, such as spiral growth governed by
screw dislocations and the two-dimensional nucleation of terraces.

A high-resolution, non-invasive optical method will be employed to visualize
and quantify the crystal shapes and their morphology. This innovative imaging
scheme will employ an optical interferometer with a cooled CCD camera. We
will take full advantage of our previous experience with this powerful new
measuring technique.

This proposed effort has inspired interest and scientific excitement throughout
the world. Many leading international physicists including Prof. A.F. Andreev,
Dr. O.A. Andreeva, Prof. A.Ya. Parshin, Prof. K.O. Keshishev (all from the
Kapitza Institute for Physical Problems, Russia), Prof. M. Paalanen (Low
Temperature Laboratory, Helsinki University of Technology, Finland), Prof. T.
Mizusaki (Kyoto University, Japan), and Prof. Y. Okuda (Tokyo Institute of
Technology, Japan) plan to propose to their respective agencies to obtain funds
to conduct synergistic research. This will promote strong international
collaboration in this area of science.



Phase Separation of 3He-4He mixtures in aerogel
and progress toward a gravity-free demagnetization refrigerator

Jeevak Parpia, Wendy J. McRae, Gavin J. Lawes, Eric N. Smith, John Beamish*, and
Norbert Mulders+

  Department of Physics, Clark Hall, Cornell University, Ithaca NY
+Department of Physics, University of Delaware, Newark DE
*Department of Physics, University of Alberta, Edmonton, AL, Canada

We report on phase separation phenomena at temperatures below 100 mK in
3He-4He mixtures in 98% open aerogel. We describe the temperature
dependence of the 4He fraction (x4) starting from a variety of 4He
concentrations. The measurements were carried out using a torsion pendulum
that contained a capacitor into which the aerogel was grown that provides an
in-situ measurement of the 4He content in the aerogel. The cell was cooled by a
high surface area sintered silver heat exchanger. Below x4 of 10% (at 21.8 bar)
we observe that the 4He is expelled from the aerogel as the temperature is
lowered. For these concentrations the limiting low temperature value of x4 is
4%, corresponding to the so-called inert layer. If we start with x4 greater than
12%, the 4He is drawn into the aerogel as the temperature is reduced. These
previously unobserved phenomena are likely due to the competition between
surface tension and the different pore geometries of the aerogel and silver
sinter. It is clear that the 4He is stable against the gravitational potential for x4

<40%, and above these concentrations there is a catastrophic invasion of the
4He-rich phase into the aerogel. We will also report on progress toward a
demagnetization refrigerator for micro-gravity environments.





Statics and dynamics of phase segregation in multicomponent

fermion gas

K. Esfarjani, S.T. Chui1, V. Kumar2, and Y. Kawazoe

Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan

Abstract

We investigate the statics and dynamics of spatial phase segregation process

of a mixture of fermion atoms in a harmonic trap using the density func-

tional theory. The kinetic energy of the fermion gas is written in terms of the

density and its gradients. Several cases have been studied by neglecting the

gradient terms (the Thomas-Fermi limit) which are then compared with the

Monte-Carlo results using the full gradient corrected kinetic energy. A linear

instability analysis has been performed using the random-phase approxima-

tion. Near the onset of instability, the fastest unstable mode for spinodal

decomposition is found to occur at a wavevector q = 2kF . However, in the

strong coupling limit, many more modes with q > 2kF decay with comparable

time scales.
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I. INTRODUCTION

Recent realizations of two3;4 and three5 component alkali Bose-Einstein condensates

(BEC's) in a trap provide us with new systems to explore the physics in otherwise un-

achievable parameter regimes.6{8. Dramatic results were recently observed in the phase

segregation dynamics of mixtures of Rb3;4 and Na5 gases. Periodic spatial structures were

found at intermediate times which then recombine at a later time.

Phase segregation phenomena have been much studied in materials science and these

can be understood using classical mechanics. Spatial modulations have also been observed,

for example, in AlNiCo alloys.9 These were explained in terms of a concept called spinodal

decomposition.10 When a system is quenched from the homogeneous phase into a broken-

symmetry phase, the ordered phase does not order instantaneously. Instead, di�erent length

scales set in as the domains form and grow with time. For the BEC's, however, quantum

mechanics plays an important role. It has been shown11 that it is possible to have an

analogous spinodal decomposition, which manifests some of the phenomenology including

a periodic spatial structure at an intermediate time that is now determined by quantum

mechanics. The time scale provides for a self-consistent check of the theory and is consistent

with the experimental results.4 The growth of domains at later times is now determined by

quantum tunneling and not by classical di�usion.

Recently, it became possible12 to cool a single component system of about a million

40K fermionic atoms in a magnetic trap below the Fermi temperature, TF leading to the

realization of a spin-polarized fermion gas of atoms. Similar to electrons in a solid, the

dilute gas of atoms �lls all the lowest energy states below the Fermi energy, EF . The

transition to this quantum degenerate state is gradual as compared to the abrupt phase

transition into a Bose condensate. For single component fermionic systems, however, the

equilibrium is di�cult to achieve as the s-wave elastic collisions are prohibited due to Pauli

exclusion principle. In the experiments of DeMarco and Jin12, this was circumvented by

using a mixture of two nuclear spin states of 40K atoms for which s-wave collisions are

2



allowed. One of the manifestations of quantum mechanics was the nature of momentum

distribution which di�ered from the well known classical gaussian distribution. The other

system which is being explored13 is the gas of 6Li atoms. From theoretical point of view, the

thermodynamic properties and the density and momentum distributions of a spin-polarized

Fermi gas in a harmonic trap have been studied14{16. Butts and Rokhsar14 have obtained

universal forms of the spatial and momentum distributions for a single component spin-

polarized non-interacting fermion gas using the Thomas-Fermi (TF) approximation, whereas

Schneider and Wallis16 have studied the e�ects of shell closure for small number of atoms.

Brunn and Burnett15 have studied an interacting fermion gas of 6Li atoms which have a

large negative scattering length. Such an interaction could also lead to the possibility of

super
uid state17 in these systems. In the present paper, we consider mixtures of these new

�nite systems of ultracold fermionic atoms with a positive scattering length and explore the

equilibrium and non-equilibrium quantum statistical physics using the TF approximation,

Monte Carlo simulations, and the random phase approximation.

II. STATICS

We �rst start with the statics of a two component fermion gas of atoms with masses m1

and m2 and particle numbers N1 and N2. This is assumed to be con�ned in an azimuthally

symmetric harmonic trap with radial and axial frequencies ! and �!, respectively which

are considered to be the same for both the components. Unlike the electron gas in matter,

the fermion gas of atoms is neutral and dilute. The signi�cant interactions between atoms

are, therefore, only short-ranged and these would be responsible for any phase segregation

in the system. In the long wavelength limit, the system can be well described by density

functional theory and the total energy can be written as

E =
Z
[
X
�

E0�(��) + g�1(r)�2(r)]dr: (1)

Here E0� =
�h2

2m�
��(r)+

1
2
m�!

2(x2+ y2+�2z2)��(r) is the non-interacting part of the energy

density and ��(r) is the particle density of the component � = 1; 2 with
R
��(r)dr = N�.
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The interaction term has been approximated by contact potential g�(r� r
0). g is related to

the scattering length l by g = 2��h2l= �m, with �m = m1m2=(m1+m2). We take l to be positive

and consider here only the s-wave scattering. Therefore, the contribution to the interaction

term is non-zero only when the species are di�erent or are in di�erent hyper�ne state as in

experiments. From the exclusion principle, there is no contact interaction between particles

of the same species. In a more general treatment including p-wave scattering there would be

additional terms involving interaction between identical species also. But these are small.

For the kinetic energy density �� we use a local approximation including the �rst and

second derivatives of the charge density,

��(r) =
3

5
(6�2)2=3��(r)

5=3 +
1

36

jr��(r)j2
��(r)

+
1

3
r2��(r): (2)

The �rst term represents the TF approximation to the kinetic energy. The second term is

1
9
jrp�� j2 and represents the gradient correction to the kinetic energy. The integral of the

third term extended to in�nity vanishes, and will be neglected.

Without the interaction term in (1), the system behaves in the same fashion as the one

component system in which case Butts and Rokhsar14 obtained EF to be related to the total

particle number N by EF = �h!(6�N)1=3 and the density pro�le at T=0 is given by

�non�interacting(r) = �0
h
1� �r2=R2

F

i3=2
; (3)

with �r2 = x2 + y2 + �2z2, �0 = 8N�=�2R3
F , and RF = (2EF =m!2)1=2. The latter gives the

characteristic size of the gas. In the TF approximation, the trapping potential can be treated

to be locally constant and we can de�ne a local Fermi wavevector, kF (r), and the density at

T = 0 can be written as �non�interacting(r) = k3F (r)=6�
2. Also we can de�ne a characteristic

Fermi wavevector KF = (2mEF=�h
2)1=2 corresponding to a free particle with energy EF . We

now examine the properties of the mixed (two-component) system in the presence of inter-

actions. The strength of the coupling, which controls the phase segregation, depends on the

dimensionless parameter which is the ratio between the interaction and the kinetic energies,

namely g�1�2=[
3�h2

10
(6�2)2=3(�

5=3
1 =m1 + �

5=3
2 =m2)] / lk3F1k

3
F2(m1 +m2)=(m2k

5
F1 + m1k

5
F2). In
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the simple case of equal masses (m1 = m2 = m) and densities (�1 = �2 = �) of the two

components, this simply becomes / lkF . This means that the coupling would be stronger

if l and the density are large. Also as EF is proportional to the frequency of the trap (a

higher frequency leads to larger separation between the levels), the coupling would be large

for higher frequencies.

For a general two-component system with chemical potentials �1 and �2 the ground state

is obtained by minimizing the new thermodynamic potential 
 = E � R
(�1�1 + �2�2)dr.

This leads to the following system of equations:

@


@�1(r)
=

�h2

2m1

2
4(6�2�1)

2

3 � 1

36
(

�����
r�1
�1

�����
2

+ 2
r2�1
�1

)

3
5+ (

1

2
m1!

2�r2 � �1 + g�2) = 0 (4)

@


@�2(r)
=

�h2

2m2

2
4(6�2�2)

2

3 � 1

36
(

�����
r�2
�2

�����
2

+ 2
r2�2
�2

)

3
5+ (

1

2
m2!

2�r2 � �2 + g�1) = 0: (5)

Similar to the one-component case, one can rewrite the above in a dimensionless form by

introducing for each of the species �, the following quantities: R� = [2��=m�!
2]

1

2 , kF�(r) =

(6�2��0(r))
1

3 , KF� = (2m���=�h
2)

1

2 , G� = g���0=��, S� = kF�=KF� and n�(r) = ��(r)=��0.

Here ��0(r) is the density of the component � in the absence of interaction and �� = 3-�.

If one neglects the smaller terms containing derivatives of � (the TF limit), one obtains

the following algebraic equations satis�ed by the dimensionless densities n1 and n2 for any

coupling strength G�:

S2
1n

2=3
1 = 1 � �r2=R2

1 � G1n2
S2
2n

2=3
2 = 1� �r2=R2

2 �G2n1: (6)

We see that the e�ect of the additional G�n�� term is to deplete the regions where n�� is

highest (without necessarily leading to a phase segregation).

When there is phase segregation, the interface energy is proportional to the square root

of the coe�cient of the gradient term19 and it often serves to distinguish di�erent con�gu-

rations. In that case, their e�ect cannot be neglected and these are included in the Monte

Carlo simulations. We next discuss some special cases for the TF limit.
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A. TF limit: Similar densities: (�1 = �2) for any coupling

To simplify the notations, we will use: �1 = �2 = �; R1 = R2 = R; G1 = G2 = G. In this

case, three solutions to Eq. (6) will correspond to n1 = n2, of which only one is physical with

n1 > 0. If a solution n2 = f(n1) exists, by symmetry, another one is necessarily n1 = f(n2).

These solutions with n1 6= n2 can be obtained numerically. The real solutions are plotted in

Fig. 1, where the physical n1 = n2 solution is referred to as "Sym", and the other conjugate

(asymmetric) solutions are referred to as "A1" and "A2". Below we discuss these solutions

in the weak and strong coupling limits.

1. Weak or intermediate coupling regime

In this case we look for symmetric solutions (n1 = n2 = n, S1 = S2). Equation (6) then

reduces to (dropping the subscripts):

S2n(r)2=3 = 1� �r2=R2 � G n(r); (7)

which can be solved easily numerically to give the charge pro�le of the non-segregated phase.

It is possible to show that after proper rescaling, the result for all coupling strengths and at

any point can be summarized in a single curve displayed with solid line in Fig. 1. If nG(r)

is a solution for Eq. (7), then N = nG3 versus P = [1 � �r2=R2]G2 is the universal function
of Fig. 1 satisfying S2N 2=3 + N � P = 0. For small couplings and near the boundary

(P � 0; N 2=3 � N , N = S�3P3=2 ), this curve is a power law and in fact tends to

the non-interacting density n(r) � [1� (x2 + y2 + �2z2)=R2]
3=2

. For larger couplings, and

near the center where P is the largest, N 2=3 � N ) N � P. The density can then be

approximated with n(r) � [1� �r2=R2]=G.

2. Strong coupling regime

The above situation, however, can not be always sustained. In the strong coupling limit,

we can have phase segregation (n1 6= n2), and one needs to go back to Eq. (6) which now

6



admits lower energy solutions that are not \permutation symmetric":

S2
1n

2=3
1 + Gn2 = 1 � (x2 + y2 + �2z2)=R2 , S2

1N 2=3
1 +N2 = P , S6

1N 2
1 = (P �N2)

3

S2
2n

2=3
2 + Gn1 = 1� (x2 + y2 + �2z2)=R2 , S2

2N 2=3
2 +N1 = P , S6

2N 2
2 = (P �N1)

3; (8)

where we used the same simplifying notations as before. As previously mentioned, the

symmetric solution N1 = N2 always exists. This can be exploited to reduce the above

equations to a quadratic equation, which is analytically more transparant.

Subtracting the above equations from each other and dividing out by N1�N2, we obtain

at the point S1 = S2,

S3
1N1 + S3

2N2 = (P �N2)
2 + (P �N1)

2 + (P �N2)(P �N1): (9)

This quadratic equation can be solved for N1 in terms of N2.

The solutions will all be axially symmetric in that they are functions of �r2 only. In

actuality, the axial symmetry can also be broken, but we do not �nd it here since we

neglected the terms in gradient of the charge density in the kinetic energy. The broken

symmetry solutions will be discussed in the results from the Monte Carlo simulations where

these terms were kept. In Fig. 1, the solutions with n1 6= n2 can be seen in the limit of

small reduced distance and large P. The bifurcation point where these solutions start to

occur corresponds to Pc � 0:74, and Nc � 0:3. Since G2 = P=(1� �r2=R2) � P, the critical
coupling for the unequal solution to occur is Gc =

pPc. Since G = S2(kF l)4=3�, we �nd a

critical dimensionless coupling (kF l)c � 2:03. We shall come back and compare this value

with that obtained with a di�erent approach.
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FIG. 1. Top: Dimensionless charge versus dimensionless radius �r=R for G = 1 in the case of

S1 = S2 = 1. For �r=R larger than 0.51 both asymmetric solutions join the symmetric density

pro�le. The sharp features around this point are due to the neglect of the gradient terms. Bottom:

Universal curve of rescaled chargeN = nG3 versus P = (1��r2=R2)G2 which is valid for all coupling

strengths. Note that 0 < P < 1, and Nmax = 0:43. The strong coupling regime is separated from

the weak coupling regime by the line P = 0:741. In both �gures, the symmetric solution is drawn

with solid line, and the asymmetric one with dashed lines.

B. TF limit: Very di�erent densities: (�1 � �2) for any coupling

One can also treat the case where one of the species is a minority (�1 � �2). If we

assume �1 = �2�2, then R1 = �R2; KF 1 = �KF 2;, and n� � 1. The charge distribution of

the majority species will be weakly perturbed. Referring to Eqs. (6), one can see that the

coupling G1 = g�20=�1 becomes very small and maybe neglected. Thus a good approximation

is to assume �1 � �non�interacting. The G2 term in the second equation, however, is a large

quantity, and will strongly a�ect the charge density n2. Therefore,

n2(r) = S�3
2

h
1� �r2=R2

2 � G2S�3
1 [1� �r2=R2

1]
3

2

i3
2 : (10)

In the presence of the majority species, the number of atoms of minority species will be much

less than their non-interacting counterparts which would have the same chemical potential.

As we can see from the above equation, their number, even at the origin is reduced by a

factor of (1 � G2S�3
1 )

3

2 . We �nd that for a large enough G2 the charge N2 is depleted from

the center (see also Fig. 1b ) More importantly, their general pro�le is not a�ected much,

though the radius is also much smaller than R1.

C. TF limit: linear instability analysis

We next study the 
uctuations of the system about its equilibrium con�guration in the

TF limit by expanding the thermodynamic potential 
 upto second order in the charge

9



density variation �� about its minimum which was computed above. The sign of the second

derivative of 
 will decide the stability of the symmetric phase. A phase segregation occurs

when the second derivative ceases to be positive de�nite. If the transition is �rst order, it

would have already occurred before reaching a negative second derivative. For simplicity,

we consider the symmetric phase which was just solved. In this case, the second derivative

from Eqs. (3-4) is just a 2� 2 matrix:

@2


@��@��0

=
�h2

2m�

2

3
(6�2)

2

3 �
� 1

3

� ���0 + g (1� ���0): (11)

The phase instability criterion in the symmetric phase thus becomes

!� =
�h2

2
p
m1m2

2

3
(6�2)

2

3 �
�

1

3

� � g = 0 (12)

Thus the instability will �rst occur locally at the point where the relation N 1=3 = Gn 1

3 =

2=3S1S2 is satis�ed. At the origin where S1 = S2 = 1, this implies that N = 0:296. This is

within numerical accuracy to the critical Nc obtained earlier.

D. General case: Monte Carlo results

The density distribution that extremized the energy functional in Eq. (1) can be obtained

by a Monte Carlo simulation with a weighting factor exp(�E=T ) for a parameter T that is

su�ciently low. This is basically the simulated annealing method and has been exploited

successfully in earlier treatment8 of the corresponding Bose system described by a Gross-

Pitaevski functional.

We approximate the volume integral of the energy functional by a discrete sum. Using

the scaled radius �r, we sample a lattice inside a sphere of diameter 2R consisting of 40 sites

along the diameter, making a total of 33398 sites. The derivative term is approximated by a

�nite di�erence. For simplicity, we show here results for the case when the two components

have the same mass.

We �rst show in Fig. 2 the density pro�le of component 2 as a function of x and

y for z=0 for the weak coupling case with no phase segregation. The values of di�erent

10



parameters were chosen to be ! = 600Hz, l = 52 aBohr, � =
p
8, and N1 = N2 = 106

(�1 = �2 = 1:626 � 10�29); roughly corresponding to the experimental parameters of the

40K system.12 The density pro�le for component 1 is the same and hence is not shown.

FIG. 2. Snap shot of the density pro�le at z=0 as a function of x and y in the weak coupling

limit.

In the limit of strong interaction, phase segregation starts and as mentioned earlier, the

system can now also break cylindrical symmetry. This happens when kF l is large enough,

which in turn can be achieved with only large kF , only large l, or both. To illustrate this,

we show in Fig. 3 the density pro�les for components 1 and 2 for the case of only large l

with l = 20800aB ; �1 = �2 = 1:626 � 10�29; and ! = 300Hz.

FIG. 3. Snap shot of the density pro�le of components 1 (top) and 2 (bottom) at z=0 as a

function of x and y in the strong coupling limit.
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For the case of both large kF and l, we show in Fig. 4 the density pro�les for l = 2080aB;

�1 = �2 = 1:626 � 10�29; and ! = 6000Hz. The di�erence in the densities of the two

components shows that the largest change occurs near the center where the density is the

maximum.

FIG. 4. Snap shot of the density pro�le of components 1 and 2 and their di�erence at z=0 as

a function of x and y in the strong coupling limit.

It is to be further noted that for this case, the density distribution is still quite cylindrical

but there is a slight asymmetry, as we can see from the graph of the di�erence. This

asymmetry become more pronounced as the interaction is increased further. In Fig. 5 we

have shown the results of simulations with larger l. The density pro�les were calculated for

l = 4160aB ; �1 = �2 = 1:626 � 10�29; ! = 6000Hz.

12



FIG. 5. Snap shot of the density pro�les of components 1 and 2 at z=0 as a function of x and

y in the strong coupling limit.

As discussed earlier, phase separation can also occur when N1 >> N2. As an illustration,

we show in Fig. 6 the density pro�les for components 1 and 2 for the case l = 104aB;

�1 = 2:6016 � 10�26; �2 = 4:336 � 10�26 and ! = 1600000.

FIG. 6. Snap shots of the density pro�les at z=0 as a function of x and y for N1 >> N2.
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The density of component 2 is small, thus its noise is also substantially higher.

III. DYNAMICS

We next turn our attention to the issue of dynamics. For the classical and boson spinodal

decomposition, the fastest unstable mode occurs at a �nite wave vector. We ask if a similar

situation occurs for the fermion case. We found that the fastest unstable mode occurs at

wavevector q = 2kF at the onset of instability. For stronger coupling, many modes with

q > 2kF decay with comparable time scales. We now describe the details of this linear

stability analysis.

The energy functional (Eq. (1)) which was approximated with a local kinetic energy

depending on the density and its derivatives is only good in the long wavelength limit. Due

to this approximation, we found that the instability has a local character and occurs �rst

in regions of high density. Here we will perform a linear instability analysis in the random

phase approximation (RPA) to improve upon this local picture. The linear susceptibility �

is de�ned as the response of the charge density to an external potential V which could also

be �-dependent:

���(r) =
X

�0=1;2

Z
dr0���0(r; r0)V tot

�0 (r0): (13)

Here V tot is the total self-consistent �eld and is the sum of the external �eld and that due

to the interaction: V tot
� = V� + g����: The bare response ��� can be obtained from the

usual Lindhard expression20. Since there is no term in the Hamiltonian that interchanges

the species 1 and 2, o�-diagonal terms of the susceptibility are zero (�12 = �21 = 0).

Taking the above into consideration, Eq. (13) can be written in the following matrix form:

�� = �(V + G��), leading to �� = [1 � �G]�1�V , where the 2 � 2 matrix G has 0 as its

diagonal elements and g as its o�-diagonal elements, and � is diagonal. Consequently, an

instability will occur when the following determinant becomes zero:

Detj1� �Gj = Detj1� g2�11�22j = 0: (14)
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In the case where the densities are equal, �11 = �22 � �, the two eigenmodes are calculated

as:

��1 + ��2 = (1 � �g)�1�(V1 + V2) (15)

��1 � ��2 = (1 + �g)�1�(V1 � V2): (16)

The �rst mode corresponds to a density 
uctuation, and the second mode ��1���2 represents
the phase separation instability in which we are interested. The response corresponding to

this mode is given by �(q; w) = [1+g�(q; w]�1. The instability decay time ��1 is determined

from the formula ��1(q; i�) = 0. There exists a q = q0 such that �(q0) is largest. This

determines the spinodal wavevector in the fermion system. To treat this problem, we use

the semi-classical approximation and take kF in an inhomogeneous system to be a local

function of the position: kF (r) = [6�2�(r)]1=3. From the Lindhard expression20 for � for real

frequencies, we obtain, after correcting for a spin degeneracy factor of 2, the corresponding

dimensionless response �� = 4�2�h2�(q; is)=mkF for imaginary frequencies:

��(q; is) = �1 + (1 + (s=q)2 + q2=4)log[
(1� q=2)2 + s2=q2

(1 + q=2)2 + s2=q2
]=2q (17)

+s
�
tan�1[s=(q(1� q=2))] + tan�1[s=(q(1 + q=2))]

�
=q:

Here q is in units of kF and s, in units of �h=2EF . The two dimensional plot of �� as a function

of q and s is shown in Fig. 7.

FIG. 7. Plot of the Lindhard susceptibility as a function of q for several values of the imaginary

frequency.
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Now g� = kF l��=�. The instability condition thus implies c�� = 1 where c = kF l=�. From

this plot, we arrive at the conclusion that for small g there is no solution to ��1(q; i�) = 0

and no instability develops.

The algebraic equation c��(q; i�) = 1 is solved with a bisection algorithm. The inverse

decay time � as a function of the wavevector in units of kF is shown in Fig. 8. As can be

seen, the fastest unstable mode occurs at wavevector q = 2kF at the onset of the instability

(c � 0:3). For stronger coupling, many modes with q > 2kF decay with comparable time

scales.

FIG. 8. The inverse decay time for phase segregation mode of wave vector q for three values of

the dimensionless coupling c = kF l=�.

The 2kF instability occurs at a critical dimensionless coupling (kF l)C � 0:3�. This is

about two times smaller than the instability derived in the previous section, which focused

mostly on the long wavelength aspect of the problem. We think the di�erence is real, and

suggests a physical picture where the 2kF instability occurs �rst, with more phase segregation

happening as the coupling is further increased.

Further phase separation creates a bigger increase in the kintic energy of the system,

which cannot be compensated for by the interaction term. In the really strong interaction

limit, further phase separation can take place either via tunnelling21;22 or via quantum

motion of the domain walls. We hope to investigate this further in the future.
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IV. CONCLUSION

In conclusion we have investigated the statics and dynamics of the spatial phase segrega-

tion process of a mixture of fermion atoms in a harmonic trap using the density functional

theory and the random phase approximation. As the coupling starts to increase, even with

the same chemical potential, equilibriumdistribution with unequal densities starts to appear,

which quite often do not exhibit axially symmetric correleations.

Similar to the classical and Bose spinodal decomposition case, the fastest mode for the

initial phase segregation occurs at a �nite wave-vector. However, di�erent from these other

cases, near the onset of instability with intermediate coupling, the phase separation stops

after the initial phase separation at the wavevector 2kF . Further phase separation creates a

bigger increase in the kintic energy of the system, which cannot be compensated for by the

interaction term.

The instability calculation for the phase segragation phenomena discussed here is related

to the instability calculation for the antiferromagnetic transition of the electron gas. In the

electron gas, this is enhanced when there is nesting of Fermi surface such as in Cr or in one

dimensional materials. The transition always stops after the 2kF instability and no further

\segregation" takes place.

An interesting situation is the one dimensional trap as it would exhibit a much stronger

instability. In mean �eld, the one dimensional density di�erence response function �(2kF ) =

1=[1 + lkF ln(T=EF )] is logarithmically in�nite at zero temperature. The transition temper-

ature occurs at Tc = EF e
�1=kF l: One dimensional trap has been extensively studied5 and we

expect a higher tendency towards phase segragation in that case as well.
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Numerical Studies of Confined Helium and Helium Films

Efstratios Manousakis,
Florida State University

We have used state of the art simulation techniques to study the finite-size
scaling behavior of thermal resistivity near the lambda point of helium confined
in pore-like geometry similar to the experiment BEST.  We also present our
results for the phase diagram of helium deposited on the ideal graphite substrate
and on graphite pre-plated with hydrogen. Our results for a few layers are in
remarkable agreement with the experiment. In addition, to the phase diagram,
our studies will give us insight on the role of the surface Van der Waals forces in
scaling of confined helium.





Thermal Dissipation in 4He Below but Near the Lambda Line

Kerry Kuehn and Guenter Ahlers

Department of Physics and iQUEST,

University of California, Santa Barbara, CA 93106, USA

(October 9, 2000)

Abstract

We present high-resolution experimental results for the thermal resistivity

R due to mutual friction below but near the superfluid transition temperature

Tλ(P ) of 4He. The measurements were made along several isobars between

saturated vapor pressure and the melting curve. They cover the heat-current-

density range 0.1 < q < 70µW/cm2 and the reduced-temperature range 3 ×

10−7 < t ≡ 1− T/Tλ(P ) < 3× 10−5 ( Tλ(P ) is the transition temperature at

pressure P for q = 0 ). We find that R has an incipient divergence at Tλ(P )

which can be described by the powerlaw R = (t/t0)
mν+α where t0 = (q/q0)

x;

but this divergence is supplanted by a transition to a highly dissipative phase

at a critical temperature Tc(q, P ) < Tλ(q, P ) described by tc(q, P ) ≡ 1 −

Tc(q, P )/Tλ(P ) = (q/∆0)
y.
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FIG. 1. Left: A schematic drawing of the cryostat. Right: the sample cell. Shown are the

mounting post (A), cell top (B), wings (C) and (G) and sideplanes (D) for mounting thermometry,

stainless steel sidewall (E) and cell bottom (F).

I. INTRODUCTION

At finite heat-current densities q superfluid 4He has a thermal resistivity R(t) due to the

interaction between the normalfluid and the superfluid known as “mutual friction”. [1] For

bulk helium and at saturated vapor pressure (SVP) recent high-resolution measurements

suggest a divergence of R(t, P ) at t ≡ 1− T/Tλ(P ) = 0, where Tλ(P ) is the superfluid tran-

siton temperature at a pressure P in the limit as q vanishes. [2] However, upon approaching

Tλ, there was a sudden dramatic increase of R at Tc(q, P ) < Tλ(P ) where R was still finite.

In the present paper we present results which extend the previous measurements at

SVP to several isobars, covering the pressure range SV P ≤ P <∼ 29bar. In addition to

determining R(t, P ), our measurements also yielded Tc(q, P ).

Measurements of R were made before at various pressures by Brewer and Edwards. [3]

These authors used much larger heat currents, and worked well below the superfluid tran-

sition. They observed that R increases with pressure. We also find that R increases

with pressure. In our current and temperature range the dependence on P , t, and q

2
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FIG. 2. Typical experimental runs. Horizontal dashed lines represent Tλ(P ). Solid, dotted,

and dash-dotted lines represent the temperatures of the cell top, cell side top, and cell side bottom

thermometers respectively. Left: A complete low-q run (see text). Right: Expanded view of a

high-q run. δT is the small temperature difference between the sideplanes due to mutual friction.

The vertical dashed line represents the time at which the cell bottom reached Tc(q, P ).

can be described by the power law R = (t/t0)
−(mν+α) with t0 = (q/q0)

x. Here, ν is the

correlation-length exponent, and m and α are exponents appearing in the Gorter-Mellink

mutual friction model described below. For Tc(q, P ), we find that tc(q, P ) = (q/∆0)
y where

tc(q, P ) ≡ 1− Tc(q, P )/Tλ(P ).

II. EXPERIMENTAL PROCEDURE

An experimental run consisted of applying a constant heat current to the cell bottom

while ramping the temperature upwards through the transition. An example of this pro-

cedure is shown in the left part of Fig. 2. At each q and P , the cell-top temperature was

regulated a couple of micro Kelvin below the transition (A). Next, q = 15 nW/cm2 was

applied to the cell from the bottom (B). Several minutes were allowed for a steady-state

temperature-profile to develop. The cell-top temperature was then ramped at a constant

3



rate of 3 nK/second up and then down again through the transition (C). The heat current

was then turned off (D). This yielded Tλ(P ), i.e. the transition temperature in the limit of

very low q.

The cell-top temperature was then reduced to several µK below the transition (E). After

equilibration, a larger q, in this case 2.37 µW/cm2, was applied to the cell bottom.The fluid

was again allowed to reach its steady-state temperature (F). The cell-top temperature was

then ramped at a rate of 0.7 nK/second upwards through the transition (G).

III. RESULTS

The effect of the finite thermal resistivity, and of the shifted transition temperature

at Tc(q), are clearly visible in the right-hand side of Fig. 2, which depicts a run at q =

21.31µW/cm2 and P = 28.8 bar. The horizontal dashed line represents Tλ(P ) determined

from the low-current ramp. The upper and lower traces represent the temperatures at the

lower and upper sideplanes respectively. The vertical dashed line represents the time at

which the fluid at the cell bottom reached Tc(q, P ). The small difference δT between the

sideplane temperatures to the left of this line is due to mutual friction. Slightly to the right

of this line, Tc(q, P ) passes the bottom sideplane. This is used to determine the shifted

onset. In the following subsections we describe the analysis of these two phenomena.

A. R(t, q, P ) analysis

The thermal resistivity can be determined from the sideplane spacing h, the heat-current

density q and the temperature difference between the sideplanes δT via the formula

R ≡ δT

hq
. (1)

This equation assumes a linear temperature profile in the fluid. For the small temperature

differences we are considering this is a good approximation.
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FIG. 3. The thermal resistivity R as a function of the reduced temperature t. Left: results at

vapor pressure for several q. Right: results at constant q for several pressures.

The left-hand plot of Fig. 3 shows R at SVP for various q as a function of t, where now

t ≡ 1 − 〈T 〉/〈Tλ(P )〉. Here 〈〉 indicates averaging the two sideplane values. These results

agree with previous measurements [2] in that they exhibit both a powerlaw dependence on

t and a strong dependence on q. The right-hand plot of Fig. 3 shows R at constant q for

various pressures. It suggests that R is given by similar powerlaws for various pressures, but

that its magnitude increases with pressure.

To interpret these results quantitatively, we used as a guide the formula

∇T = Awm ρn

s
= Aot

−α

(
Q

ρssT

)m
ρn

s
(2)

which was suggested by Gorter and Mellink to describe mutual friction [1]. Here we used on

the right the equation Q = ρssTw [4] with w = vn − vs. Using the known critical behavior

ρs ∝ tν [5], we may immediately identify the t- and q-dependence of R:

R ≡ −∇T

Q
∼ Qm−1t−(mν+α) . (3)

This may now be cast in another form to facilitate data analysis:

R = (t/to)
−(mν+α) , (4)
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FIG. 4. The exponent mν + α of Eq. 4 and its pressure dependence.

to = (q/qo)
x . (5)

Eq. 4 and Eq. 5 are related to Eq. 3 via

m = 1 + x(mν + α) . (6)

Using data from, for instance, Fig. 3, we fit Eq. 4 to R to obtain mν +α and t0. On the left

side of Fig. 4 we show the results for mν + α as a function of q for several pressures. There

is no systematic dependence on q. Thus an average value of mν + α was calculated for each

pressure. The averages are shown on the right side of Fig. 4. The variation of mν + α with

pressure can be described by the formula

mν + α = (2.76± 0.03)−
(

0.004± 0.002

bar

)
× P (7)

In Fig. 5 we show t0 as a function of q for each pressure. At SVP, t0(q) displays a clear

power law behavior. At higher pressure t0 shows a bit more scatter; but we assumed that it

still can be described by a powerlaw. Thus, we fit Eq. 5 to the data. This yielded the values

for x and q0 shown in Fig. 6. The variation of x and q0 with pressure can be described by

x = (0.929± 0.001)−
(

0.0001± 0.0006

bar

)
× P , (8)
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q0 = (215± 2)−
(

2.6± 1.4

bar

)
× P . (9)

Finally, from Eq. 6 and the measured values of mν + α and x, we obtained the results

for m shown in Fig. 7. The variation of m with pressure can be described by the formula

m = (3.56± 0.03)−
(

0.005± 0.002

bar

)
× P (10)

Using simple dimensional considerations, Gorter and Mellink had argued that m should

have the value 3, consistent with measurements deep in the superfluid phase. Measurements

closer to Tλ, including the present ones, indicate that m > 3 near the transition.

B. Tc(Q,P ) Analysis

We now explain the procedure used to extract Tc(q, P ) from data like those in Fig. 2.

As noted in Ref. [6], the existence of thermal dissipation below Tc(q, P ) for large q presents

a challenge in selecting Tc(q, P ) because the transition appears “rounded”. Now, however,
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FIG. 8. Left: the temperature difference δT between sideplanes before (broken trace) and

after (adjacent solid trace) mutual friction subtraction as a function of the fluid temperature at

the bottom side plane. Right: An expanded view. The arrows show the temperatures at which

Tc(q, P ) arrived at the cell bottom (left arrow) and at the cell side bottom (right arrow).

having determined the behavior of R(t, q, P ) near Tλ(P ), we may remove its contribution to

δT. The residual signature in δT of the onset of dissipation is much sharper. It can be used

to determine Tc(q, P ) with good resolution.

The data shown on the left hand side of Fig. 8 is taken at 28.8 bar. The abcissa is the

fluid temperature measured by the bottom sideplane thermometer. Each of the broken lines

represent a temperature difference δT between the sideplane thermometers for a particular q.

Associated with each broken line is a solid line which represents the temperature difference

δT after the contribution from mutual friction was subtracted. The mutual friction model

did not fit the data perfectly as is obvious from the ramps at 14.60 and 18.55 µW/cm2.

However it worked remarkably well for some of the runs, as is clear from the ramps at 9.47

and 25.26 µW/cm2.

After the mutual-friction subtraction, the residual increase in δT provides a sharp sig-

nature of Tc(q, P ). The right-hand side of Fig. 8 gives a closer look at the 25.26µW/cm2

run. Starting from the left of the figure, the first arrow points to the temperature at which
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FIG. 9. Left: The depression of the critical temperature as a function of q and P and theoretical

predictions [7] at P = 0.05 and 28 bar. Right: An expanded view in the high-q region and fits of

Eq. 11 to the data.

the cell bottom reached Tc(q, P ). This is apparent from the increase in the density of data

points—the ramp rate slows down due to the development of a highly dissipative He I layer

at the cell bottom. The second arrow points to the region where δT has begun to develop

between the sideplanes: the bottom sideplane has reached Tc(q, P ). In order to avoid pos-

sible effects of the copper-He4 boundary upon the transition, this temperature was used to

determine Tc(q, P ).

In Fig. 9 we show the results for ∆tc(q, P ) ≡ 1 − Tc(q, P )/Tλ(P ) and the theoretical

predictions from Ref. [7]. A power law of the form

∆tc(Q,P ) = (q/∆0)
y . (11)

may be fit to the data. This fit describes the data remarkably well at large q. At small q

and at high pressure, there are deviations as well as more scatter. However, there exists a

discrepancy between the measured and predicted values of ∆tc(q, P ) which is much larger

than any experimental uncertainties. This was observed in previous experiments [6]. Inter-

estingly, the pressure dependence of ∆tc(q, P ) predicted by the theory is consistent with the
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FIG. 10. Left: The parameter y of Eq. 11 as a function of pressure (circles), and the average

value y = 0.803 (horizontal line). Right: The parameter ∆0 of Eq. 11 obtained from a fit of Eq. 12

to the data when x is fixed at 0.803.

measurements.

Shown on the left hand side of Fig. 10 is the parameter y obtained from fitting Eq. 11

to the data at various pressures. The 0.05 bar exponent y = 0.817 agrees with previous

results at saturated vapor pressure [6] which yielded x = 0.813. At high pressures, y falls

a bit lower. To proceed, we assumed that y, in accordance with theoretical predictions, is

pressure independent, fixed y at the pressure-averaged value y = 0.803, and repeated the fit

to extract the amplitude ∆0. The result clearly decreases with pressure, as shown in Fig. 10.

A linear fit yields

∆0 = (812± 3)−
(

13.9± 0.3

bar

)
× P . (12)
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Nonequilibrium and non-uniform near-critical states

Alexander Patashinski
Northwestern University

Scale invariance of critical fluctuations determines the structure of near-critical
states appearing when the regime of critical point is perturbed by a temperature
or other thermodynamic coordinates shift or by external conditions that violate
the uniformity or equilibrium in the system.  Critical exponents, universal
amplitudes and other predictions of the theory for the equilibrium uniform states
are confirmed by the experiment.  A much more severe test of the physical
picture underlying the scaling theory and the renormalization group is the
response of the critical system to perturbations of non-equilibrium nature
(perturbations out of the thermodynamic plane). The nonequilibrium near-
critical state attracted little attention from experimental physicists partially
because of absence of theoretical predictions and clarifications of optimal
experimental situations.  The number of possible nonequilibrium and/or non-
uniform states is infinite, and the first step here is to find situations that may
serve as a standard set for the experimental study of non-uniform and
nonequilibrium criticality. We present the results of a study of selected
situations and effects in non-equilibrium near-critical state proposed for
experimental study in microgravity, including relaxation following a rapid
homogeneous change of pressure/temperature and fluctuations and boundary
effects in systems with a temperature gradient.



Review: Impact of the Space Radiation Environment on Experiments of
the Fundamental Physics Discipline, Energy Deposition by Neutrons
and Solar Energetic Particles, and a Proposed Direct Measurement

STP Boyd, RV Duncan, University of New Mexico
WA Holmes, Jet Propulsion Laboratory, Caltech

The "laboratory environment" in space really has two new features for physics
experiments: microgravity and radiation.  In the Fundamental Physics
Discipline we generally concentrate on the microgravity, but the penetrating
components of the space radiation environment are unavoidable, and have
proven capable of strongly perturbing precision measurements.  To avoid
making expensive mistakes, it is useful to improve our understanding of the
space radiation environment and its effects on physics experiments.  As a
component of the DYNAMX experiment we have an ongoing effort to
understand and estimate the effects of the space radiation environment on
precision physics experiments.  We review the basics of the space radiation
environment, how the physics of "heating" differs from both the physics of
standard radiation dosimetry and from "biological effectiveness," and our
present estimations of the heating to be seen on the ISS orbit.  New
considerations of the impact of neutrons and solar energetic particles will be
presented.  We discuss the unique capabilities afforded by cryogenic radiation
measurements and a proposed plan for a dedicated small "add-on" experiment
(CCRAD) to measure and monitor the space radiation environment and its
effects during cryogenic experiments of the Fundamental Physics Discipline.
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A Cont i nuous ,  Sor pt i on- Pumped
3He Cool er  f or  Spac e

Pat Roach, NASA Ames Research Center

Abs t r ac t
For reaching temperatures below 1 K in space, it is natural to think of 3He coolers, which can cool to below 0.3 K.

In order to maximize the duty cycle it is desirable to have a cooler that operates continuously.   A method is presented
for achieving this using two sorption-pumped 3He coolers operating alternately.  The thermal switching required is
performed with 3He heat pipes that are configured to act as thermal diodes.  Such a 3He cooler can be the basis of a
continuous dilution cooler reaching 0.05 K; a continuous dilution cooler can be the basis of an adiabatic demagnetization
refrigerator that can reach 0.002 K.

A Continuous 3He Cooler
Figure 1 is a schematic of a continuous 3He cooler.  It consists of two pots of liquid 3He that can be

pumped by canisters of charcoal.   On the right side of Fig. 1 is shown a 3He pot that is condensing 3He
that is being driven out of its charcoal by heating the charcoal to 40 K.  A heat sink at 2 K provides
cooling to condense the liquid.   On the left of Fig. 1 is a pot that is at 0.4 K.  Its charcoal pump is cooled
to 10 K by exchange gas coupling the inner charcoal canister to the 10 K heat sink.  At 10 K the
charcoal will pump the 3He very effectively  and cools the attached pot to 0.4 K by evaporative cooling.
The pots will be tested on the ground with a porous matrix of copper in them.  This matrix is needed in

Fig. 1.  A continuous 3He cooler.
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A New Low Temperature Device for High Resolution, In Situ
Measurement and Control of Submicron Gaps

Tamar More, Clifford Dax, Joseph Niemela

Department of Physics,
University of Oregon,
Eugene, OR 97403

Gary Ihas

Center for Ultra Low Temperature Research,
P.O. Box 118440, University of Florida,
Gainesville, FL 32611

abstract

We have developed a device to investigate finite-size scaling of the
thermal expansion coefficient in liquid helium near the lambda transition.
Motivated by the need for a range of well known, uniform, sub-micron
gaps with constant surface conditions, we have built a variable-gap
parallel-plate capacitor that can be adjusted in situ. We measure the gap at
three points using laser interferometry. A careful choice of the material
and thickness of the reflecting surfaces results in asymmetric fringes, for
which both exceptional sensitivity and a high contrast ratio can be
achieved simultaneously. Both the gap size and its uniformity are actively
controlled using voice coil actuators. This design has a number of
additional benefits: the gap can be kept closed until low temperature use,
data can be collected for all gaps with no thermal cycling, and no spacers
are needed to establish the gap.



INTRODUCTION

The boundary conditions and physics that pertain to a solid/fluid or fluid/vacuum interface are an important
problem throughout condensed matter science. In general, this area is difficult t o study because the fluid
properties are affected only a few angstroms from the interface. This is not the case near a phase transition,
where the correlation length diverges as the transition is approached. A study of the boundary layer, made
macroscopic by the approach to the phase transition,  is possible in such systems.

Renormalization group (RG) theory leads to very general concepts of universality and scaling, which apply
to all phase transitions. Since these predictions are exact for any physical system of a given class, this
situation is begging that very precise measurements be made to test this theory. Under intense scrutiny
for decades, the lambda transition in helium, a line of critical points, has been the archetype used to develop
and test the theory as applied to phase transitions. In particular, much experimental work has been done to
test scaling theory in a system that is passing from bulk, or 3 dimensional behavior, to the 2 dimensional
behavior of a slab geometry (see Mehta and Gasparini and references therein). And, recently, theories have
predicted exact results for confined liquid helium (see Sutter, Schmolke, and Huhn). The scaling depends
on the thickness of the helium slab, and most experiments investigate one or at most 4 thicknesses. In
addition, the lambda transition temperature is a function of pressure. Here we present an apparatus in which
the thickness d may be varied continuously, in situ, from 100 Angstroms to 30 microns.

To test scaling, we wish to measure a quantity that diverges as the phase transition is approached. Such
quantities include the thermodynamic response functions: heat capacity Cp, isobaric thermal expansion
coefficient, or isothermal compressibility. After considering which parameter is most easily measured
without experimental artifact, which will complement the measurements already done and being planned for
space, and which might be the next best candidate for flight, we chose a capacitor technique to measure the
dielectric constant. Capacitance measurements are very precise and are not susceptible to the addenda
problems that plague heat capacity measurements. The dielectric constant can be converted to density with
the Clausius-Mossotti relation, and the derivative of the density with respect to temperature at constant
pressure to the expansion coefficient. The expansion coefficient, in turn, is related to the heat capacity.

Our first attempt to study this problem involved using two very precisely made, small-gap capacitors with
the gap fixed by spacers, but these proved unreliable, often shorting on cool-down. Since the gap was fixed,
a series of capacitors and experimental runs were needed to investigate size effects. This was a very
expensive and time-consuming course to pursue and the smallest gap that was achieved was 2 microns. In
addition, the sample cell was subject to inevitable changes in surface conditions between runs, providing an
unknown and uncontrolled parameter in the measurements. These travails led to a completely new approach
to the apparatus. A capacitor has been designed whose gap may be varied without need for disassembly,
while maintaining a very precise level of parallelism. Furthermore, the gap may be changed while the
apparatus is cold and filled with helium. One advantage of this design is that th ecapacitor can be parked
with a very small gap. This small gap will act as a filter to keep dust out while the capacitor is being
transported to, and mounted on, the cryostat. Other advantages, discussed elsewhere, also make this new
capacitor design very exciting.



The gap is formed by two highly polished fused silica plates, the lower one movable and the
upper one fixed. Coarse height and tilt adjustments may be made before the cell is sealed via 3
screws; in operation, the gap is determined and maintained parallel by a feedback system of 3
servo-actuators. The feedback is provided by measurements of interference fringes produced by
3 Fabry-Perot interferometers, one above each actuator. A thick Au film on the upper surface of
the lower (movable) plate serves as one of the Fabry-Perot mirrors and as one of the capacitor
electrodes. On the upper plate are the partially reflecting Fabry-Perot mirrors and a set of
electrodes.

To maintain parallelism and correct spacing (gap), the light from a 670 nm laser beam is split
into 3 beams. Each beam then passes through a diplexer, which is simply a Cr/Au mirror with a
pinhole. The light travels through the multimode fiber optics and is focused onto the
interferometer mirrors. The beams then reflects back into the fiber optics. When they return
to the diplexers, most of the light reflects into photo diodes, as shown. This signal is used to
control the current to the coils.
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Here are some photos of the device:
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Light from a 670 nm laser beam is split into 3 beams.

Each beam passes through a diplexer, which is simply a
Cr/Au mirror with a pinhole.

The light travels through the multimode fiber optics

It is then focused onto the interferometer mirrors.

The beams then reflects back into the fiber optics.

When they return to the diplexers, most of the light
reflects into photo diodes.
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A number of options for actuators exist.

These include
Piezo-electric stacks,
Voice-coils,
Magneto-strictive devices,
Pressure transducers,
etc.

Initially, we used piezo-electric stacks.

We are currently developing a device with
voice-coil actuators.



In our first design, we used piezoelectrics stacks
as actuators. Our stacks are approximately 5 cm
tall and have a stroke of 40 m at 100 V at room
temperature, but only 1 m at 4.2 K.

µ
µ

advantages:

These are voltage-driven devices with an extremely
high impedence.
There is a direct relationship between voltage and
position.
They are mechanically connected
to the optical mount.

disadvantages:

The stroke at 4.2 K is only 1mm
(lever and flexture system
increased the motion at the optic
to 6 mm).
They are tall.
They are expensive.

PIEZOELECTRIC ACTUATORS
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Schematic of cell with piezoelectric actuators



In our current design, we use voice coils as actuators.
These currently have a stroke of 75 m at 200 mA at
both room temperature and 4.2 K. It should be possible
to increase the stroke per unit current by optimizing the
design further (increase the number of turns, change the
magnets, decrease the magnet-coil gap).

µ

advantages:

The range of motion is much greater
than with the piezos.
The coils are only about 1 cm tall, so the cell can be
much smaller.
The coils are simple and inexpensive to make.

disadvantages:

The current directly controls force,
rather than position.
When not actively controlled, this
design is more susceptible to vibration.
Cross-coupling is greater than with the piezos.

VOICE COIL ACTUATORS
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The desired gap, in units of fringes (335 nm), is set.

The bottom plate is moved up until it touches the upper plate.

A ramp current applied to the coils (or voltage to the piezos)
lowers the bottom plate.

This produces an oscillating signal at the photo diode. A pulse
counter keeps track of the number of oscillations (fringes).

When the number of fringes corresponding to the desired gap
have been recorded, the feed back loop is closed. The current in
the coil (voltage of the piezo) is controlled to maintain the
photo diode signal at a constant intensity.

CONTROL ALGORITHM

Photo diode output with the feedback loop closed
using the piezo-electric stack actuators at room temperature.



                                                  CONCLUSIONS

We offer improvements and innovations which will allow scaling theory to be tested in
a more precise and extreme manner than ever before.

The thickness of the slab is adjustable, in situ and while cold.

The thickness of the gap can be adjusted over 2 orders of magnitude, spanning bulk to
confined behavior.

The slab thickness may be varied in one cool-down, allowing a complete test of finite-
size scaling theory.

The uniformity of the slab thickness (capacitor gap) is regulated using 3 optical
interferometers.

The surfaces (capacitor plates) defining the helium slab will be the same for all
measurements, something never achieved before.

There will be no non-helium material between the electrodes, such as spacers, avoiding
problems with temperature-dependent materials masking the scaling law dependence.

Our apparatus enables us to pursue another very exciting possibility.  With the gap wide,
one may pool a helium film of some thickness on the lower plate.  This film would then
have one boundary condition determined by a solid surface  and the other exposed to
vacuum.  Then, after measuring the dielectric constant as a function of reduced
temperature, the bottom plate is moved so that the top plate contacts the helium with a
gap equal to the free film thickness just investigated. The second set of measurements
now taken will be able to directly determine, for the first time, the nature of the
vacuum/film interface.
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SPECIFIC HEAT OF HELIUM CONFINED TO CYLINDERS
 NEAR THE LAMBDA POINT

J. A. Lipa and M. Coleman
Physics Department, Stanford University, Stanford CA 94305

We report the preliminary analysis of measurements of the specific heat of helium confined to very uniform 8-micron
diameter cylinders and to 0.26 micron diameter Anopore cylinders in the temperature region near the lambda point. The data
allow improved tests of the emerging theory of finite size phenomena and cross-over to lower dimensional states.  We find
generally good agreement with scaling using exponents derived by renormalization and other methods.  We also find
reasonable agreement with more detailed calculations of cross-over behavior based on explicit inclusion of boundary
conditions.  However some aspects of the scaling of the 8-micron data were unexpectedly poor.

INTRODUCTION
The study of bulk three-dimensional condensed matter has occupied the attention of physicists for a

very long time. Less well studied are lower-dimensional systems, primarily because the techniques
available are more restricted, and also because idealized systems are rather hard to prepare. In many
cases, for true one or two-dimensional behavior, it is necessary to operate with sample dimensions below
the nanometer range. This means that substrate interactions are often important via the action of Van der
Waal’s forces and other surface phenomena. The resulting properties can then be highly perturbed from
their expected substrate-free values, making it very difficult to test theories of cross-over to lower-
dimensional systems.

Of significant current interest1 is the study of cross-over behavior observed in liquid helium near the
lambda point, as the bulk is confined more and more tightly in one or more dimensions.  The case of
helium is especially important because of the ideal nature of the system, and the possibility of working
with an extremely wide range of correlation lengths, from Ångstroms to tens of microns. The effective
length scale can easily be varied by taking advantage of the divergence of the correlation length ξ as the
superfluid transition is approached. Close enough to this transition, ξ can reach the micron scale2,
allowing measurements where substrate effects are essentially negligible.  A recent flight experiment,
CHEX, measured the effect of confinement to a parallel plate geometry with an average gap of 57
microns3.  This data compared well with lower accuracy results4 with sub-micron gaps and extended our
confidence in the models of confinement.   However, the existence of the Kosterlitz-Thouless transition
in 2 dimensions decreases the value of all 2-dimensional data at least below the bulk transition, as it
provides a mechanism for a range of potential breakdowns of scaling.  The case of cylindrical
confinement does not suffer from this potential defect, simplifying the comparison between scaling
theory and experiment.

The development of very uniform arrays of cylindrical holes for imaging devices has opened up the
possibility of working with large, regular confining dimensions where the problems with the substrate
are expected to be greatly reduced.  Here we report new measurements of the specific heat of helium
confined to 8-micron cylindrical holes which have exceptionally uniform diameters and smooth surfaces.
The results show confinement effects in the region where ξ ≥ 1 micron, greatly exceeding the range of
the Van der Waals interaction, and the scale of typical surface roughness in the holes.  Also, the effects
span a temperature region only a few microdegrees wide near the lambda transition, allowing the
straight-forward application of asymptotic scaling in the analysis.  To obtain data for a substantially
different  confinement length, we chose Anopore which can be obtained with a pore size close to the
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maximum used in previous work5.  Some results from this system are also presented. The work
described here is a continuation of an earlier effort with an improved calorimeter and also an extension
to the case of helium confined to Anopore with an average pore size of 0.26 microns.  Surprisingly, we
find that the new 8 micron results do not compare well with other measurements in the region of the
peak. Elsewhere, the comparison is reasonably good.  The Anopore results are in reasonable agreement
with earlier results5 at small pore diameters.

APPARATUS
The measurements were made using a specially designed calorimeter and the standard heat pulse

technique for determining heat capacity.  To obtain an acceptable signal-to-noise ratio very near the
transition, temperature changes were sensed using a paramagnetic salt thermometer6 with a noise level of
about 3x10-10 K/√Hz.  One of the quantities of interest in the experiment is the displacement of the
confined helium specific heat maximum relative to the bulk transition temperature.  For 8 micron pores,
this displacement is expected to be at most a few microdegrees, well beyond the precision with which
the absolute temperature can be established.  To measure the shift, the calorimeter was divided internally
into two chambers connected by a very small passage.  The design is shown schematically in figure 1.
The lower chamber was tightly fitted with three microchannel plates7 that consist of a glass matrix in
which many fine circular holes have been etched, with a free volume of about 60% of the total.  Electron
microscope pictures show that these holes are uniform in size to ≤ 2%, and free of any visible surface
roughness at magnifications up to 104. The height of this chamber was .85 mm. The upper chamber of
the calorimeter was an annular cavity with a height of 0.75 mm, designed to give a small but clear heat
capacity signal with essentially bulk behavior.  This chamber also contained a valve which permitted the
fill line to be evacuated after both chambers were filled, thus reducing the associated heat leak to the

Figure 1:  Schematic view of calorimeter for 8-micron sample, as described in the text. (Not to scale.)

surroundings.  The body of the calorimeter was made from high thermal conductivity copper to
minimize thermal gradients during the measurements.  In the temperature region studied the thermal
response was usually limited by that of the thermometer and support structure to about a second.  The
assembly was placed in a four-stage thermal enclosure8 which allowed very good control of the thermal
environment.
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For the Anopore measurements a similar calorimeter was used, but the bottom tank was .75 mm
high, filled with 17 Anopore disks. The uniformity of the pore diameters in these disks did not approach
that of the microchannel plates, but the pores appeared reasonably free from barrel distortion, which
appears to be a common problem with Nucleopore holes.  Digitized photographs of the surface of a
fractured disk were used to determine the distribution of pore sizes. The most probable diameter was
found to be 0.26 microns and the standard deviation about 10 %.

RESULTS AND ANALYSIS
The heat capacity results for the two samples showed a sharp spike corresponding to the bulk

singularity in the top tank which clearly marked the transition temperature. Because of the finite slope of
the lambda line, the hydrostatic pressure head between the two tanks due to the helium in the connecting
pipe shifts the bulk transition temperature of the lower tank by about –1.9x10-6 K relative to the top. A
more rounded peak was also seen which corresponded to the effect of confinement in the lower tank, and
contains the information of interest here.

To analyze the confined specific heat signal in detail, we first need to remove the bulk helium
contribution.  Since the bulk specific heat curve is relatively well known, in principle we could simply
subtract out the signal from the upper tank and obtain the lower tank signal directly.  However, the exact
distribution of the helium between the two tanks was not well known, due to uncertainties in the details
of the geometry in the valve area.  Instead, we assumed that the lower tank’s heat capacity should vary
smoothly in the region of the upper tank singularity, since this occurs a few microdegrees above the
lower tank’s bulk transition point, and subtracted out a range of trial top tank signals. Thus we sought a
top tank fraction that removed essentially all traces of the bulk singularity from the combined helium
signal.  This approach worked well and gave rise to a smoothly rounded confined helium curve.

In the region where the confinement effects are strong the function, f1, used to model the curve is
defined by the scaling relation9:

C(t,L) - C(to, ∞)  =  Lα/νf1(x) (1)

where C is the specific heat, α and ν  are the exponents characterizing the divergence of C and ξ
respectively,  x = tL1/ν  and  to = (1.43Å/L)1/ν. The  function f1 has been calculated using Monte-Carlo
techniques10 and is shown in figure 2.  The corresponding results for the two samples are also shown. It
can be seen that there is fair agreement, but there are departures from the model curve in the case of the
8 micron data. For strict scaling to hold, the data sets should collapse onto a universal curve within their
uncertainties.  It is disappointing that the collapse for the two samples is imperfect.

It is interesting to speculate on the cause of this discrepancy.  Comparison of the results with
those of Chen and Gasparini5 shows somewhat better agreement with the Anopore results. We therefore
have re-evaluated the 8-micron experiment and its calibration.  The primary sources of experimental
error that could cause the problem are in the temperature scale calibration and the pore diameter
measurement. To collapse the data by adjusting the temperature scale would require about a 50% change
in the flux-to-Kelvin scale factor. Reanalysis of the records and comparison with other measurements
has confirmed this scale factor to within 1%.  To explain the effect as an incorrect pore diameter, the
‘correct’ size would have to be about 4 microns, in significant disagreement with the manufacturer’s
specification and our own measurements.  Preliminary calculations show that the surface specific heat
agrees reasonably well with the predicted value above the transition. Therefore it would appear that the
correlation length behavior is as expected, at least for t > 10-5 or so. However, this may not be the case



4

for much smaller t. On the other hand, the CHEX results argue for a normal behavior of the correlation
length to t ~ 10-8 or so in a parallel plate geometry.  The effect of the relatively wide distribution of pore
sizes with the smaller confining system might play a role.  This would bias the Anopore peak towards
sharper behavior than predicted, due to non-linearities, but it is hard to make this effect big enough.
Another possibility is a difference in the boundary condition for helium in the microchannel plates. How
this could be manifested in the presence of the solid monolayer of helium at any wall is difficult to
understand. Again the CHEX results would argue against a correlation length dependent effect of this
type.
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Figure 2:  Scaled specific heat of the confined helium as a function of scaled temperature near the transition.
Filled circles: Anopore data; squares: Monte-Carlo model; triangles: 8-micron data.

In summary it appears that most aspects of the current theoretical predictions for confinement effects
are in reasonable agreement with experiment over a wide range of length scales.  However, very near the
heat capacity peak for large confining dimensions there is some evidence for rounding in excess of that
predicted.
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